The endocannabinoid system is affected by cholesterol dyshomeostasis: Insights from a murine model of Niemann Pick type C disease.

Neurobiol Dis

Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00179, Italy; Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy. Electronic address:

Published: October 2019

AI Article Synopsis

  • Niemann-Pick type C (NPC) disease is a severe inherited disorder that causes abnormal cholesterol trafficking, leading to neurodegeneration and other organ issues.
  • This study investigates how cholesterol imbalances in NPC affect the brain's endocannabinoid (eCB) system, focusing on key components like cannabinoid receptors and their associated ligands.
  • The research reveals significant alterations in eCB system components in various brain regions of NPC mice, suggesting that these changes may intensify the neurological symptoms associated with the disease.

Article Abstract

The dyshomeostasis of intracellular cholesterol trafficking is typical of the Niemann-Pick type C (NPC) disease, a fatal inherited lysosomal storage disorder presenting with progressive neurodegeneration and visceral organ involvement. In light of the well-established relevance of cholesterol in regulating the endocannabinoid (eCB) system expression and activity, this study was aimed at elucidating whether NPC disease-related cholesterol dyshomeostasis affects the functional status of the brain eCB system. To this end, we exploited a murine model of NPC deficiency for determining changes in the expression and activity of the major molecular components of the eCB signaling, including cannabinoid type-1 and type-2 (CB and CB) receptors, their ligands, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), along with their main synthesizing/inactivating enzymes. We found a robust alteration of distinct components of the eCB system in various brain regions, including the cortex, hippocampus, striatum and cerebellum, of Npc1-deficient compared to wild-type pre-symptomatic mice. Changes of the eCB component expression and activity differ from one brain structure to another, although 2-AG and AEA are consistently found to decrease and increase in each structure, respectively. The thorough biochemical characterization of the eCB system was accompanied by a behavioral characterization of Npc1-deficient mice using a number of paradigms evaluating anxiety, locomotor activity, spatial learning/memory abilities, and coping response to stressful experience. Our findings provide the first description of an early and region-specific alteration of the brain eCB system in NPC and suggest that defective eCB signaling could contribute at producing and/or worsening the neurological symptoms of this disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2019.104531DOI Listing

Publication Analysis

Top Keywords

ecb system
20
expression activity
12
cholesterol dyshomeostasis
8
murine model
8
ecb
8
brain ecb
8
components ecb
8
ecb signaling
8
system
5
endocannabinoid system
4

Similar Publications

Remplissage is a procedure that decreases the rate of recurrent instability after arthroscopic stabilization in patients with an engaging Hill-Sachs lesion. This technique involves capsulotenodesis of the infraspinatus tendon and posterior capsule into the Hill-Sachs lesion using 2 knotless anchors with suture passage through the infraspinatus tendon guided by a percutaneous needle. Previously described techniques use knots or anchor placement through the infraspinatus, which can be challenging to control and irreversible if tendon penetration occurs in an undesirable location.

View Article and Find Full Text PDF

Chemical Probes for Investigating the Endocannabinoid System.

Curr Top Behav Neurosci

January 2025

Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.

Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CBR) and type 2 (CBR) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.

View Article and Find Full Text PDF

The Role of Cannabinoids and the Endocannabinoid System in the Treatment and Regulation of Nausea and Vomiting.

Curr Top Behav Neurosci

December 2024

Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada.

Despite using the recommended anti-emetic treatments, control of nausea and vomiting is still an unmet need for cancer patients undergoing chemotherapy treatment. Few properly controlled clinical trials have evaluated the potential of exogenously administered cannabinoids or manipulations of the endogenous cannabinoid (eCB) system to treat nausea and vomiting. In this chapter, we explore the pre-clinical and human clinical trial evidence for the potential of exogenous cannabinoids and manipulations of the eCB system to reduce nausea and vomiting.

View Article and Find Full Text PDF

Brain endocannabinoid control of metabolic and non-metabolic feeding behaviors.

Neurochem Int

December 2024

Basic School of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 260071, China. Electronic address:

The central endocannabinoid (eCB) system in brain shows a crucial role in the regulation of feeding behaviors, influencing both metabolic and non-metabolic mechanisms of appetite control, which has been paid much attention. Although there are already many review articles discussing eCB modulation of feeding behaviors, our paper attempts to summarize the recent advancements through synapses, circuits, and network in brain. Our focus is on the dual role of eCB signalling in regulating metabolic energy balance and hedonic reward-related feeding.

View Article and Find Full Text PDF

Modulation of the endocannabinoid system by (S)-ketamine in an animal model of depression.

Pharmacol Res

January 2025

Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark. Electronic address:

Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!