Genomic deletions/duplications detected by array comparative genomic hybridization (aCGH) should be confirmed by an independent technology. This approach allows also to test, at low cost, inheritance of the imbalance. In the present study we explored the use of quantitative PCR (qPCR) to confirm aCGH-detected potentially clinically relevant imbalances. Only samples with DLRS <0.2 were tested for confirmation. aCGH results were confirmed in 102/118 cases (86.5%). A major element for non-confirmation was the dimension (and the probe coverage) of the putative aberration. Imbalances detected by 10 or less probes in aCGH assay were not confirmed in 11 out of 41 cases (26.8%), while those ones detected by 20 or more probes were always confirmed (46 cases). Among not confirmed imbalances, no statistical difference was found between deletions and duplication. Our data indicate that validation should be required for imbalances detected by less than 10 probes in aCGH assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcp.2019.101421 | DOI Listing |
Anal Chem
January 2025
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Propidium monoazide (PMA) is a dye that distinguishes between live and dead cells in molecular assays like the Polymerase Chain Reaction (PCR). It works by cross-linking to the DNA of cells that have compromised membranes or extracellular DNA upon photoactivation, making the DNA inaccessible for amplification. Currently, PMA is used to detect viable pathogens and alleviate systemic bias in the microbiome analysis of samples using 16S rRNA gene sequencing.
View Article and Find Full Text PDFMol Cell Probes
January 2025
Department of Oral Medicine and Prosthodontics, Hebei Medical University Third Hospital, 050000, China. Electronic address:
Objective: The aim was to investigate the clinical performance of microRNA-199a-3p (miR-199a-3p) in patients with chronic periodontitis.
Methods: 91 patients with chronic periodontitis and 78 healthy individuals were enrolled for the research subjects. MiR-199a-3p expression was detected using real-time quantitative PCR (RT-qPCR) assay.
Environ Pollut
January 2025
Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China. Electronic address:
Epidemiological studies have reported that atmospheric particulate matter (PM) contributes to ischemic stroke (IS). Biological studies also indicated that the pathway where PM induces IS involves several pathological processes. Moreover, exposure to PM can alter the expression of specific microRNAs (miRNAs) and ultimately accelerate the onset of IS by regulating related pathways.
View Article and Find Full Text PDFGene
January 2025
College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan 063210 China. Electronic address:
Purpose: We downloaded the gene expression profiles of patients with diabetic nephropathyfrom the GEO database and combined it with differential gene analysis of rat transcriptome,our study employed animal models to examine the role of key hub genes in diabetic nephropathy and to pinpoint significant gene regulation in this disease.
Methods: An examination of differential expression was performed using the online analysis tool GEO2R and the DN-related datasets GSE30528 and GSE1009 obtained from the GEO database. A comparison of gene expression between the normal and diabetic nephropathy groups was conducted using the RNA-seq technique.
Introduction: Loss of skin integrity due to a wound or disease can lead to severe disability or even life threat. The highly expressed microRNAs in the skin are of great significance for skin development. The investigation purposed to explore the effect and mechanism of miR-211 on inflammation, oxidative stress and migration in keratinocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!