The deficiency of nucleos(t)ide analogues (NAs) as anti-hepatitis B virus (HBV) drugs in clinical use is attributable to their insufficient enrichment in liver and non-target organ toxicity. We aimed to develop potent anti-HBV adefovir derivatives with hepatotrophic properties and reduced nephrotoxicity. A series of adefovir mono l-amino acids, mono cholic acid-drug conjugates were designed and synthesized, and their antiviral activity and uptake in rat primary hepatocytes and Na-dependent taurocholate co-transporting polypeptide (NTCP)-HEK293 cells were evaluated. We isolated compound 6c as the optimal molecular candidate, with the highest antiviral activity (EC 0.42 μmol/L, SI 1063.07) and highest cellular uptake in primary hepatocytes and NTCP-HEK293 cells. In-depth mechanistic studies demonstrated that 6c exhibited a lower toxicity in HK-2 cells when compared to adefovir dipivoxil (ADV). This is because 6c cannot be transported by the human renal organic anion transporter 1 (hOAT1). Furthermore, pharmacokinetic characterization and tissue distribution of 6c indicates it has favorable druggability and pharmacokinetic properties. Further docking studies suggested compounds with ursodeoxycholic acid and l-amino acid groups are better at binding to NTCP due to their hydrophilic properties, indicating that 6c is a potential candidate as an anti-HBV therapy and therefore merits further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2019.07.012 | DOI Listing |
Biomolecules
December 2024
Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia.
The first monomeric pyridoxal-5'-phosphate (PLP)-dependent transaminase from a marine, aromatic-compound-degrading, sulfate-reducing bacterium Tol2, has been studied using structural, kinetic, and spectral methods. The monomeric organization of the transaminase was confirmed by both gel filtration and crystallography. The PLP-dependent transaminase is of the fold type IV and deaminates D-alanine and ()-phenylethylamine in half-reactions.
View Article and Find Full Text PDFPlant Genome
March 2025
Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China.
Tryptophan decarboxylase (TDC) belongs to a family of aromatic amino acid decarboxylases and catalyzes the conversion of tryptophan to tryptamine. It is the enzyme involved in the first step of melatonin (MT) biosynthesis and mediates several key functions in abiotic stress tolerance. In Oryza sativa under pesticide-induced stress, TDC function is unclear.
View Article and Find Full Text PDFPoult Sci
December 2024
College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada. Electronic address:
This study investigated the effects and interactions among diets formulated to have high starch-to-lipid ratios (S:L), amino acid density [indicated as % digestible lysine (DigLys)], and AME on growth performance and carcass characteristics of heat stressed broilers. A {3,3} simplex lattice design was used to assess relative effects and generate predictive models. Three basal finisher diets were formulated to have the highest S:L ratio (Basal A; 20:1), DigLys (Basal B; 1.
View Article and Find Full Text PDFSci Rep
January 2025
Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China.
Hydroxytyrosol, a fine chemical, is widely utilized in food and pharmaceutical industries. In this study, we constructed a pathway to produce hydroxytyrosol by co-expressing tyrosin-phenol lyase (TPL), L-amino acid dehydrogenase (aadL), α-keto acid decarboxylase (KAD), aldehyde reductase (yahK) and glucose dehydrogenase (gdh). We changed combinations between plasmids with different copy numbers and target genes, resulting in 84% increase in hydroxytyrosol production.
View Article and Find Full Text PDFTalanta
December 2024
Analytical Chemistry Division, Chemistry Department, Lomonosov Moscow State University, 119234, Moscow, Russia. Electronic address:
Novel and simple spectrophotometric and distance based procedures for thiols (L-cysteine, N-acetylcysteine, and glutathione) determination in biological fluids and pharmaceuticals have been proposed based on their inhibitory action on the oxidation of catechol in the presence of Agaricus bisporus crude extract (ABE). The influence of L-glycine, L-alanine, L-proline, L-methionine, L-cystine, ascorbic acid, uric acid, and bilirubin on the thiol determination has been investigated. Uric acid, bilirubin, L-cystine (oxidized thiol), and L-amino acids do not interfere with the determination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!