The primary objective of the present study was to estimate the effect of Streptococcus agalactiae intramammary infection on milk production and somatic cell count (SCC) in Norwegian dairy cows. A secondary objective was to assess differences in the effect of common Strep. agalactiae sequence types (ST) found in Norwegian dairy herds. We performed a cohort study combining registry data with sequence-type data from Strep. agalactiae isolates. Herds in which Strep. agalactiae had been detected in individual animals (bacteriological culture or quantitative PCR) between 2012 and 2015 were included. We accessed monthly test-day milk yield records for the entire period to compare milk yield and SCC between cows that were Strep. agalactiae positive and all other cows, within each herd. The study sample consisted of 150 herds, 15,757 cows, 30,850 lactations, and 204,126 test days. We evaluated the effects of Strep. agalactiae on test-day milk yield and SCC using mixed linear regression models, controlling for clustering by herd, cow, and lactation. Multilocus sequence typing of Strep. agalactiae was available for isolates from 86 herds. Additional models were fit to a subset of herds (n = 59) in which ST1, ST23, ST103, and ST196 had been found, to compare the effects of ST on milk production and SCC. In the period 3 to 2 mo before diagnosis, Strep. agalactiae-positive cows produced an average of 1.3 kg more DIM-adjusted milk/d than their negative herd mates. At the time of diagnosis, production was on average 0.13 kg less DIM-adjusted milk/d in Strep. agalactiae-positive cows than in negative cows; 2 to 3 mo after diagnosis, they produced 1.24 kg less DIM-adjusted milk/d than negative cows. Losses persisted for the rest of the investigated period. Cows with ST23, ST103, and ST196 followed a similar pattern as the overall analysis with respect to milk production, whereas ST1-affected cows produced similar amounts of milk before diagnosis as the negative cows. Cows with ST1 experienced the largest milk loss 1 to 2 mo after diagnosis but then recovered to some extent; for cows with ST103, the severe milk loss persisted for the rest of the investigation period. The cow-associated ST103 elicited a lower response in peak SCC compared with ST23, ST103, and ST196. The results indicate an effect of Strep. agalactiae on milk production and SCC. Production was lowest 2 to 3 mo after a positive sample. Peak SCC was reached the month before diagnosis, with notable differences between sequence types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2018-16155 | DOI Listing |
Front Immunol
January 2025
Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
is a major causative agent of streptococcosis in Nile tilapia () and understanding its etiology is important to ensure the sustainable development of global tilapia farming. Our research group recently observed contrasting disease patterns in animals infected with two different serotypes (Ib and III). To better understand the basis for these divergent responses, we analyzed the brain transcriptome of Nile tilapia following bacterial exposure.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand.
Due to its lack of the L-gulonolactone oxidase () enzyme, Nile tilapia is unable to synthesize vitamin C; thus, it requires an adequate level of exogenous vitamin C in its diet. To enhance antioxidant properties and vitamin C-related effects, we employed recombinant technology to integrate the -encoding gene into the chromosome. In this study, fish were divided into four groups: those fed with a basal diet (CON), a basal diet + vitamin C (VC), a basal diet + wild-type (BS), and a basal diet + recombinant (BS+GULO).
View Article and Find Full Text PDFVirulence
December 2025
Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA.
This review summarizes key virulence factors associated with group B (GBS), a significant pathogen particularly affecting pregnant women, fetuses, and infants. Beginning with an introduction to the historical transition of GBS from a zoonotic pathogen to a prominent cause of human infections, particularly in the perinatal period, the review describes major disease manifestations caused by GBS, including sepsis, meningitis, chorioamnionitis, pneumonia, and others, linking each to specific virulence mechanisms. A detailed exploration of the genetic basis for GBS pathogenicity follows, emphasizing the roles of capsules in pathogenesis and immune evasion.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Obstetrics and Gynecology, Taixing People's Hospital, No.1, Changzheng Road, Taixing, Jiangsu, 225400, China.
Background: Group B Streptococcus (GBS) colonization is one of the major causes of severe neonatal infections. The study was intended to identify GBS colonization in pregnant women, explore its potential risk factors, and analyze the impact of GBS on outcomes for both mothers and newborns.
Material And Methods: A retrospective research was carried out on pregnant women who had undergone GBS screening and delivered from June 2020 to December 2022.
BMC Infect Dis
January 2025
Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!