A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Smart and dual-targeted BSA nanomedicine with controllable release by high autolysosome levels. | LitMetric

Smart and dual-targeted BSA nanomedicine with controllable release by high autolysosome levels.

Colloids Surf B Biointerfaces

Key Laboratory of Systems Biology, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, 320 Yueyang Road, Shanghai, 200031, China; Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 320 Yueyang Road, Shanghai, 200031, China.

Published: October 2019

Targeting modifications and smart responsiveness of nanomedicines can enable anticancer drugs to be selectively delivered to and controllably released in tumour cells or tissues, which can reduce the treatment's toxicity and side effects. Good biocompatibility is crucial for the clinical application of any nanomedicine. In this study, a double-targeting molecule, an RGD peptide- and 4-(2-aminoethyl) morpholine-modified, doxorubicin (DOX)-loaded bovine serum albumin (BSA) nanomedicine, that can be controllably released by the high levels of autophagic lysosomes in tumour cells was developed. The size of the spherical BSA nanoparticles is approximately 60 nm. In vitro experiments indicated that the RGD peptide- and 4-(2-aminoethyl) morpholine-modified, DOX-loaded BSA nanomedicine has a better therapeutic effect than free DOX. In vivo experiments suggested that the BSA nanomedicine can successfully suppress the progression of PC9 xenograft tumours. This phenomenon may be attributable to the endocytosis of a relatively large amount of nanomedicine and the effective release of the loaded chemotherapeutic agent, as induced by high levels of autolysosomes. Collectively, the results of this study provide a smart approach for increasing therapeutic efficacy using a double-targeting molecule-modified BSA nanomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2019.06.055DOI Listing

Publication Analysis

Top Keywords

bsa nanomedicine
20
controllably released
8
tumour cells
8
rgd peptide-
8
peptide- 4-2-aminoethyl
8
4-2-aminoethyl morpholine-modified
8
high levels
8
nanomedicine
7
bsa
6
smart dual-targeted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!