AMH and AMHR2 mutations: A spectrum of reproductive phenotypes across vertebrate species.

Dev Biol

Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, 77030, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA. Electronic address:

Published: November 2019

Anti-Müllerian hormone (AMH) is a member of the Transforming Growth Factor-β family of secreted signaling proteins. AMH is expressed in Sertoli cells of the fetal and adult testes and granulosa cells of the postnatal ovary. AMH is required for the regression of the Müllerian ducts in mammalian fetuses during male differentiation. AMH signals through its Type II receptor, AMHR2. AMHR2 is expressed in mesenchyme adjacent to the Müllerian ducts, and in Sertoli, Leydig, and granulosa cells. Although AMH and AMHR2 genes have been identified in numerous vertebrate species, spontaneous or engineered mutations or variants have been found or created in only a few mammals and teleost fishes. AMH or AMHR2 mutations in mammals lead to the development of Persistent Müllerian Duct Syndrome (PMDS), a recessive condition in which affected males are fully virilized but retain Müllerian duct-derived tissues, including a uterus and oviducts, and in human and dog, undescended testes. Amh mutant female mice had accelerated ovarian primordial follicle recruitment, suggesting a role for AMH in regulating germ cells. amh and amhr2 mutations have also been experimentally generated in various teleost fishes. Depending on the fish species, loss of AMH signaling results in infertility, germ cell tumors, or male-to-female sex reversal. Here we compare the spectrum of phenotypes caused by AMH and AMHR2 mutations in a variety of vertebrate species. There are both common and unique phenotypes between species, highlighting the range of biological processes regulated by AMH signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754765PMC
http://dx.doi.org/10.1016/j.ydbio.2019.07.006DOI Listing

Publication Analysis

Top Keywords

amh amhr2
20
amhr2 mutations
16
amh
13
vertebrate species
12
granulosa cells
8
müllerian ducts
8
cells amh
8
teleost fishes
8
amh signaling
8
amhr2
6

Similar Publications

Anti-Müllerian Hormone Enhances Migration and Invasion in Human Trophoblast Cells.

Ann Clin Lab Sci

November 2024

Reproductive Medicine Centre, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China

Objective: Anti-Müllerian hormone (AMH) belongs to the transforming growth factor-β superfamily. Recent evidence shows that AMH and its type II receptor (AMHRII) are expressed by the placenta at term. The physiological role of AMH in trophoblast invasion and migration remains to be elucidated.

View Article and Find Full Text PDF

A divergent two-domain structure of the anti-Müllerian hormone prodomain.

Proc Natl Acad Sci U S A

January 2025

Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.

TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.

View Article and Find Full Text PDF

PCOS Influences the Expression of AMHRII in the Endometrium of AEH During the Reproductive Age.

Diagnostics (Basel)

December 2024

Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.

Background: Endometrial proliferative lesions (EPLs) encompass endometrial hyperplasia (EH) and endometrial carcinoma (EC). Atypical endometrial hyperplasia (AEH) is associated with an elevated risk of progression to EC. Patients with polycystic ovarian syndrome (PCOS) exhibit higher serum levels of anti-Müllerian hormone (AMH) and a correspondingly increased incidence of EPLs.

View Article and Find Full Text PDF

: Persistent Müllerian duct syndrome (PMDS) is a rare disorder of sex development (DSD) caused by mutations in the genes coding anti-Müllerian hormone (AMH) or the AMH receptor, characterized by the persistence of Müllerian derivatives, the uterus and/or fallopian tubes, in otherwise normally virilized boys. Testicular regression syndrome is common in PMDS, yet the association with supernumerary testis has been reported in only two patients where genetic testing was not performed. : Thus, we report an individual with this particular association caused by a previously unreported homozygous variant in the gene to enable future genotype-phenotype correlations in this rare disorder.

View Article and Find Full Text PDF

AMH regulates a mosaic population of AMHR2-positive cells in the ovarian surface epithelium.

J Biol Chem

November 2024

Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA. Electronic address:

The function and homeostasis of the mammalian ovary depend on complex paracrine interactions between multiple cell types. Using primary mouse tissues and isolated cells, we showed in vitro that ovarian follicles secrete factor(s) that suppresses the growth of ovarian epithelial cells in culture. Most of the growth suppressive activity was accounted for by Anti-Mullerian Hormone/Mullerian Inhibitory Substance (AMH/MIS) secreted by granulosa cells of the follicles, as determined by immune depletion experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!