Background: Diffusion-weighted imaging (DWI) in MRI plays an increasingly important role in diagnostic applications and developing imaging biomarkers. Automated whole-breast segmentation is an important yet challenging step for quantitative breast imaging analysis. While methods have been developed on dynamic contrast-enhanced (DCE) MRI, automatic whole-breast segmentation in breast DWI MRI is still underdeveloped.
Purpose: To develop a deep/transfer learning-based segmentation approach for DWI MRI scans and conduct an extensive study assessment on four imaging datasets from both internal and external sources.
Study Type: Retrospective.
Subjects: In all, 98 patients (144 MRI scans; 11,035 slices) of four different breast MRI datasets from two different institutions.
Field Strength/sequences: 1.5T scanners with DCE sequence (Dataset 1 and Dataset 2) and DWI sequence. A 3.0T scanner with one external DWI sequence.
Assessment: Deep learning models (UNet and SegNet) and transfer learning were used as segmentation approaches. The main DCE Dataset (4,251 2D slices from 39 patients) was used for pre-training and internal validation, and an unseen DCE Dataset (431 2D slices from 20 patients) was used as an independent test dataset for evaluating the pre-trained DCE models. The main DWI Dataset (6,343 2D slices from 75 MRI scans of 29 patients) was used for transfer learning and internal validation, and an unseen DWI Dataset (10 2D slices from 10 patients) was used for independent evaluation to the fine-tuned models for DWI segmentation. Manual segmentations by three radiologists (>10-year experience) were used to establish the ground truth for assessment. The segmentation performance was measured using the Dice Coefficient (DC) for the agreement between manual expert radiologist's segmentation and algorithm-generated segmentation.
Statistical Tests: The mean value and standard deviation of the DCs were calculated to compare segmentation results from different deep learning models.
Results: For the segmentation on the DCE MRI, the average DC of the UNet was 0.92 (cross-validation on the main DCE dataset) and 0.87 (external evaluation on the unseen DCE dataset), both higher than the performance of the SegNet. When segmenting the DWI images by the fine-tuned models, the average DC of the UNet was 0.85 (cross-validation on the main DWI dataset) and 0.72 (external evaluation on the unseen DWI dataset), both outperforming the SegNet on the same datasets.
Data Conclusion: The internal and independent tests show that the deep/transfer learning models can achieve promising segmentation effects validated on DWI data from different institutions and scanner types. Our proposed approach may provide an automated toolkit to help computer-aided quantitative analyses of breast DWI images.
Level Of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:635-643.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581817 | PMC |
http://dx.doi.org/10.1002/jmri.26860 | DOI Listing |
Bioengineering (Basel)
December 2024
School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China.
AI-based breast cancer detection can improve the sensitivity and specificity of detection, especially for small lesions, which has clinical value in realizing early detection and treatment so as to reduce mortality. The two-stage detection network performs well; however, it adopts an imprecise ROI during classification, which can easily include surrounding tumor tissues. Additionally, fuzzy noise is a significant contributor to false positives.
View Article and Find Full Text PDFCancer Med
December 2024
Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.
Background: Morphological and vascular characteristics of breast cancer can change during neoadjuvant chemotherapy (NAC). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-acquired pre- and mid-treatment quantitatively capture information about tumor heterogeneity as potential earlier indicators of pathological complete response (pCR) to NAC in breast cancer.
Aims: This study aimed to develop an ensemble deep learning-based model, exploiting a Vision Transformer (ViT) architecture, which merges features automatically extracted from five segmented slices of both pre- and mid-treatment exams containing the maximum tumor area, to predict and monitor pCR to NAC.
J Comput Assist Tomogr
November 2024
From the Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
Objective: This study aimed to investigate the value of radiomics analysis in the precise diagnosis of triple-negative breast cancer (TNBC) based on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and apparent diffusion coefficient (ADC) maps.
Methods: This retrospective study included 326 patients with pathologically proven breast cancer (TNBC: 129, non-TNBC: 197). The lesions were segmented using the ITK-SNAP software, and whole-volume radiomics features were extracted using a radiomics platform.
Bioengineering (Basel)
November 2024
Institute for Hospital Management of Tsinghua University, Shenzhen 518000, China.
The traditional scoliosis examination based on X-ray film is not suitable for large-scale screening, and it is also not suitable for dynamic evaluation during rehabilitation. Therefore, based on computer vision technology, this paper puts forward an evaluation method of scoliosis with different photos of the back taken by mobile phones, which involves three aspects: first, based on the key point detection model of YOLOv8, an algorithm for judging the type of spinal coronal curvature is proposed; second, an algorithm for evaluating the coronal plane of the spine based on the key points of the human back is proposed, aiming at quantifying the deviation degree of the spine in the coronal plane; third, the measurement algorithm of trunk rotation (ATR angle) based on multi-scale automatic peak detection (AMPD) is proposed, aiming at quantifying the deviation degree of the spine in sagittal plane. The public dataset and clinical paired data (mobile phone photo and X-ray) are used to test.
View Article and Find Full Text PDFPurpose: Bone metastasis is a critical complication in prostate cancer, significantly impacting patient prognosis and quality of life. This study aims to enhance bone metastasis prediction using machine learning (ML) techniques by integrating dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion features, International Society of Urological Pathology (ISUP) grade, and prostate-specific antigen (PSA) density.
Materials And Methods: A retrospective analysis was conducted on 122 patients with histopathologically confirmed prostate cancer who underwent multiparametric prostate magnetic resonance imaging (mpMRI).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!