The goal of this study was to compare dysphagia phenotypes in low and high copy number (LCN and HCN) transgenic superoxide dismutase 1 (SOD1) mouse models of ALS to accelerate the discovery of novel and effective treatments for dysphagia and early amyotrophic lateral sclerosis (ALS) diagnosis. Clinicopathological features of dysphagia were characterized in individual transgenic mice and age-matched controls utilizing videofluoroscopy in conjunction with postmortem assays of the tongue and hypoglossal nucleus. Quantitative PCR accurately differentiated HCN-SOD1 and LCN-SOD1 mice and nontransgenic controls. All HCN-SOD1 mice developed stereotypical paralysis in both hindlimbs. In contrast, LCN-SOD1 mice displayed wide variability in fore- and hindlimb involvement. Lick rate, swallow rate, inter-swallow interval, and pharyngeal transit time were significantly altered in both HCN-SOD1 and LCN-SOD1 mice compared to controls. Tongue weight, tongue dorsum surface area, total tongue length, and caudal tongue length were significantly reduced only in the LCN-SOD1 mice compared to age-matched controls. LCN-SOD1 mice with lower body weights had smaller/lighter weight tongues, and those with forelimb paralysis and slower lick rates died at a younger age. LCN-SOD1 mice had a 32% loss of hypoglossal neurons, which differed significantly when compared to age-matched control mice. These novel findings for LCN-SOD1 mice are congruent with reported dysphagia and associated tongue atrophy and hypoglossal nucleus pathology in human ALS patients, thus highlighting the translational potential of this mouse model in ALS research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954990 | PMC |
http://dx.doi.org/10.1007/s00455-019-10034-9 | DOI Listing |
Dysphagia
December 2022
Department of Otolaryngology - Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Dr. MA314, Columbia, MO, 65212, USA.
Current treatments for dysphagia in ALS do not target the underlying tongue weakness and denervation atrophy that is prevalent in spinal and bulbar ALS cases. To address this clinical gap, we studied the low copy number SOD1-G93A (LCN-SOD1) mouse model of ALS to quantify the impact of limb phenotype on tongue denervation atrophy, dysphagia penetrance, and survival time in preparation for future treatment-based studies. Two male LCN-SOD1 breeders and 125 offspring were followed for limb phenotype inheritance, of which 52 (30 LCN-SOD1 and 22 wild-type/WT, both sexes) underwent characterization of dysphagia penetrance (via videofluoroscopic swallow study; VFSS) and survival time at disease end-stage (15-20% body weight loss).
View Article and Find Full Text PDFDysphagia
April 2020
Department of Otolaryngology - Head and Neck Surgery, University of Missouri School of Medicine, One Hospital Dr. MA314, Columbia, MO, 65212, USA.
The goal of this study was to compare dysphagia phenotypes in low and high copy number (LCN and HCN) transgenic superoxide dismutase 1 (SOD1) mouse models of ALS to accelerate the discovery of novel and effective treatments for dysphagia and early amyotrophic lateral sclerosis (ALS) diagnosis. Clinicopathological features of dysphagia were characterized in individual transgenic mice and age-matched controls utilizing videofluoroscopy in conjunction with postmortem assays of the tongue and hypoglossal nucleus. Quantitative PCR accurately differentiated HCN-SOD1 and LCN-SOD1 mice and nontransgenic controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!