Magnocellular neuroendocrine cells (MNCs) of the hypothalamus play a critical role in the regulation of fluid and electrolyte homeostasis. They undergo a dramatic structural and functional plasticity under sustained hyperosmotic conditions, including an increase in afferent glutamatergic synaptic innervation. We tested for a postulated increase in glutamate AMPA receptor expression and signaling in magnocellular neurons of the male rat hypothalamic supraoptic nucleus (SON) induced by chronic salt loading. While without effect on GluA1-4 subunit mRNA, salt loading with 2% saline for 5-7 d resulted in a selective increase in AMPA receptor GluA1 protein expression in the SON, with no change in GluA2-4 protein expression, suggesting an increase in the ratio of GluA1 to GluA2 subunits. Salt loading induced a corresponding increase in EPSCs in both oxytocin (OT) and vasopressin (VP) neurons, with properties characteristic of calcium-permeable AMPA receptor-mediated currents. Unexpectedly, the emergent AMPA synaptic currents were silenced by blocking protein synthesis and mammalian target of rapamycin (mTOR) activity in the slices, suggesting that the new glutamate synapses induced by salt loading require continuous dendritic protein synthesis for maintenance. These findings indicate that chronic salt loading leads to the induction of highly labile glutamate synapses in OT and VP neurons that are comprised of calcium-permeable homomeric GluA1 AMPA receptors. The glutamate-induced calcium influx via calcium-permeable AMPA receptors would be expected to play a key role in the induction and/or maintenance of activity-dependent synaptic plasticity that occurs in the magnocellular neurons during chronic osmotic stimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675872PMC
http://dx.doi.org/10.1523/ENEURO.0112-19.2019DOI Listing

Publication Analysis

Top Keywords

salt loading
24
calcium-permeable ampa
12
ampa receptors
12
glutamate synapses
12
neuroendocrine cells
8
ampa receptor
8
magnocellular neurons
8
chronic salt
8
protein expression
8
protein synthesis
8

Similar Publications

In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.

View Article and Find Full Text PDF

Benzenedialdehyde-crosslinked gelatin nanoparticles for Pickering emulsion stabilization.

Curr Res Food Sci

December 2024

Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.

In this work, three types of benzenedialdehydes (1,2-, 1,3-, and 1,4-BDAs) were used to prepare BDA-crosslinked gelatin nanoparticles and the 1,2-BDA-crosslinked gelatin nanoparticle was explored to stabilize fish oil-loaded Pickering emulsions. The nanoparticle preparation was dependent on both pH and crosslinker types. 1,2-BDA and preparation pH of 12.

View Article and Find Full Text PDF

Ritlecitinib is an orally bioavailable, small molecule that has been approved by the U.S. Food and Drug Administration (FDA) as a once-daily oral treatment option for people 12 years of age and older with severe alopecia areata.

View Article and Find Full Text PDF

Triple-Negative Breast Cancer Aptamer-Targeting Porous Silicon Nanocarrier.

ACS Appl Mater Interfaces

January 2025

Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, Victoria 3052, Australia.

Common treatment approaches for triple-negative breast cancer (TNBC) are associated with severe side effects due to the unfavorable biodistribution profile of potent chemotherapeutics. Here, we explored the potential of TNBC-targeting aptamer-decorated porous silicon nanoparticles (pSiNPs) as targeted nanocarriers for TNBC. A "salt-aging" strategy was employed to fabricate a TNBC-targeting aptamer functionalized pSiNP that was highly colloidally stable.

View Article and Find Full Text PDF

Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!