Introduction: Large sample sizes are often required to detect statistically significant associations between pharmacogenetic markers and treatment response. Meta-analysis may be performed to synthesise data from several studies, increasing sample size and consequently power to detect significant genetic effects. However, performing robust synthesis of data from pharmacogenetic studies is often challenging due to poor reporting of key data in study reports. There is currently no guideline for the reporting of pharmacogenetic studies. The aim of this project is to develop the STrengthening the Reporting Of Pharmacogenetic Studies (STROPS) guideline. The STROPS guideline will facilitate the conduct of high-quality meta-analyses and thus improve the power to detect genetic associations.

Methods And Analysis: We will establish a preliminary checklist of reporting items to be considered for inclusion in the guideline. We will then conduct a Delphi survey of key stakeholder groups to gain consensus opinion on which reporting items to include in the final guideline. The Delphi survey will consist of two rounds: the first round will invite participants to score items from the preliminary checklist and to suggest additional relevant items; the second round will provide feedback from the previous round and invite participants to re-score the items. Following the second round, we will summarise the distribution of scores for each item, stratified by stakeholder group. The Steering Committee for the project and representatives from the key stakeholder groups will meet to consider the results of the Delphi survey and to finalise the list of reporting items. We will then draft, pilot-test and publish the STROPS reporting guideline and accompanying explanatory document.

Ethics And Dissemination: The University of Liverpool Ethics Committee has confirmed ethical approval for this study (reference: 3586). Dissemination activities will include presenting the reporting guideline at conferences relevant to pharmacogenetic research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629424PMC
http://dx.doi.org/10.1136/bmjopen-2019-030212DOI Listing

Publication Analysis

Top Keywords

pharmacogenetic studies
20
reporting pharmacogenetic
16
strops guideline
12
reporting items
12
delphi survey
12
round will
12
reporting
10
will
10
strengthening reporting
8
studies strops
8

Similar Publications

Since 1987, King Chulalongkorn Memorial Hospital (KCMH) has performed a substantial number of heart transplants as a specific therapy for advanced-stage heart failure. This descriptive study aimed to analyze post-transplant survival in the recent era compared to earlier periods and examine the pharmacogenetics of related immunosuppressants. Data from all recipients who underwent heart transplants from 1987 to 2021 were retrospectively retrieved from the electronic medical record.

View Article and Find Full Text PDF

In vitro and ex vivo studies on drug metabolism and stability are vital for drug development and pre-clinical safety assessment. Traditional in vitro models, such as liver enzyme (S9) fractions and microsomes, often fail to account for individual variability. Personalized models, including 3D cell models and organoids, offer promising alternatives but may not fully replicate physiological processes, especially for Cytochrome P450 (CYP) families involved in extrahepatic metabolism.

View Article and Find Full Text PDF

Pharmacogenetic studies involving Carboxylesterase 1 (CES1), Latrophilin-3 (LPHN3), and Catechol-O-methyltransferase (COMT) revealed individual differences regarding therapeutic response in children with attention deficit hyperactivity disorder (ADHD) under methylphenidate (MPH) treatment. This study aimed to evaluate MPH's association with the adverse effect status in children and its relationship with CES1, LPHN3, and COMT in the Turkish population. The study included 102 children and adolescents with ADHD, who were categorized as responders, or the adverse effect group based on their treatment response.

View Article and Find Full Text PDF

Fluctuations in circulating cell-free mitochondrial and nuclear DNA copy numbers in blood plasma after anti-tuberculosis drug intake in patients with drug-susceptible tuberculosis.

Tuberculosis (Edinb)

January 2025

Latvian Biomedical Research and Study Centre, Ratsupites street 1, k-1, Riga, LV-1067, Latvia; Riga Stradiņš University, Pharmacogenetic and Precision Medicine Laboratory, Konsula street 21, Riga, LV-1007, Latvia. Electronic address:

Biomarker research characterising the effect of anti-tuberculosis (TB) chemotherapy on systemic body response is still limited. In this study, we aimed to investigate fluctuations in circulating cell-free mitochondrial DNA (ccf-mtDNA) and circulating cell-free nuclear DNA (ccf-nDNA) copy number (CN) in blood plasma of patients with drug-susceptible TB (DS-TB) and to decipher factors related to these fluctuations. The results showed considerable changes in ccf-mtDNA CN in plasma samples before drug intake and 2 and 6 h afterwards, with high inter patient variability at each time point.

View Article and Find Full Text PDF

Pharmacogenetics is a branch of genomic medicine aiming to personalize drug prescription guidelines based on individual genetic information. This concept might lead to a reduction in adverse drug reactions, which place a heavy burden on individual patients' health and the economy of the healthcare system. The aim of this study was to present insights gained from the pharmacogenetics-based clustering of over 500 patients from the Croatian population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!