Furfural is an important renewable precursor for multiple commercial chemicals and fuels; a main inhibitor existing in cellulosic hydrolysate, which is used for bioethanol fermentation; and a potential carcinogen, as well. Using a genetic system in that allows detection of crossover events, we observed that the frequency of mitotic recombination was elevated by 1.5- to 40-fold when cells were treated with 0.1 g/liter to 20 g/liter furfural. Analysis of the gene conversion tracts associated with crossover events suggested that most furfural-induced recombination resulted from repair of DNA double-strand breaks (DSBs) that occurred in the G phase. Furfural was incapable of breaking DNA directly but could trigger DSBs related to reactive oxygen species accumulation. By whole-genome single nucleotide polymorphism (SNP) microarray and sequencing, furfural-induced genomic alterations that range from single base substitutions, loss of heterozygosity, and chromosomal rearrangements to aneuploidy were explored. At the whole-genome level, furfural-induced events were evenly distributed across 16 chromosomes but were enriched in high-GC-content regions. Point mutations, particularly the C-to-T/G-to-A transitions, were significantly elevated in furfural-treated cells compared to wild-type cells. This study provided multiple novel insights into the global effects of furfural on genomic stability. Whether and how furfural affects genome integrity have not been clarified. Using a model, we found that furfural exposure leads to DSBs and elevation in mitotic recombination by orders of magnitude. Gross chromosomal rearrangements and aneuploidy events also occurred at a higher frequency in furfural-treated cells. In a genome-wide analysis, we show that the patterns of mitotic recombination and point mutations differed dramatically in furfural-treated cells and wild-type cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715844 | PMC |
http://dx.doi.org/10.1128/AEM.01237-19 | DOI Listing |
Biol Direct
December 2024
Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, 1 Longhu Zhonghuan Road, Jinshui District, Zhengzhou, Henan, 450001, China.
Oral squamous cell carcinoma (OSCC) is the most frequent type of oral malignancy with high metastasis and poor prognosis. The deubiquitinating enzyme Ubiquitin Specific Peptidase 44 (USP44) regulates the mitotic checkpoint, and its deficiency leads to aneuploidy and increases tumor incidence. However, the role of USP44 in OSCC is not well understood.
View Article and Find Full Text PDFFungal Biol
December 2024
Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
Methods Mol Biol
November 2024
Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, UP, India.
Luciferase-based reporter assay is an important tool that employs bioluminescence to quickly and precisely investigate the gene of interest's promoter activity by reporter gene expression at the transcriptional level. The promoter of the gene of interest is fused with the reporter gene (a gene that produces luciferase enzymes) and then transfected into the cells. Luciferase is an enzyme that catalyzes a chemical reaction to produce light.
View Article and Find Full Text PDFPLoS Genet
November 2024
Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America.
Mammalian RAD52 is a DNA repair factor with strand annealing and recombination mediator activities that appear important in both interphase and mitotic cells. Nonetheless, RAD52 is dispensable for cell viability. To query RAD52 synthetic lethal relationships, we performed genome-wide CRISPR knock-out screens and identified hundreds of candidate synthetic lethal interactions.
View Article and Find Full Text PDFmSphere
December 2024
Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Unlabelled: parasites, the causative agents of malaria, undergo closed mitosis without breakdown of the nuclear envelope. Unlike closed mitosis in yeast, parasites undergo multiple rounds of asynchronous nuclear divisions in a shared cytoplasm. This results in a multinucleated organism prior to the formation of daughter cells within an infected red blood cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!