Load change capability of an anaerobic thermophilic trickle bed reactor for dynamic H/CO biomethanation.

Bioresour Technol

Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany. Electronic address:

Published: October 2019

Increasing shares of energy production originating from fluctuating renewable sources require measures that are able to balance power production for a stable electricity grid. H/CO biomethanation is a suitable approach to convert fluctuating excess renewable energy into the storable substitute natural gas. This study investigated the rapid load change capability of an anaerobic thermophilic trickle bed reactor while maintaining a high methane content. The return to full load (62.1 m/m/d) after a 30-min operational off-cycle was possible almost immediately, while 24-h interruptions required a 60-min stepwise load increase. To accelerate this delayed microbial conversion activity, non-steady state substrate gas conversion can be controlled via substrate and product gas flow rates, allowing to reactivate the entire microbial community and produce high quality product gas. Reactor design might be further improved to avoid short-circuiting and use the entire trickle bed gas phase as high quality gas buffer during initial load increases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.121735DOI Listing

Publication Analysis

Top Keywords

trickle bed
12
load change
8
change capability
8
capability anaerobic
8
anaerobic thermophilic
8
thermophilic trickle
8
bed reactor
8
h/co biomethanation
8
product gas
8
high quality
8

Similar Publications

The C chemical species, potassium formate (K(HCO)), known as a two-electron reducing agent, finds application in the synthesis of multi-carbon compounds, including oxalate, and plays a crucial role not only in the food and pharmaceutical industries but also across various sectors. However, the direct hydrogenation of CO to produce K(HCO) remains a challenge. Addressing this issue, efficient production of K(HCO) is achieved by integrating CO hydrogenation in a trickle-bed reactor using a heterogeneous catalyst with a novel separation method that utilizes potassium ions from biomass ash for formic acid derivative product isolation.

View Article and Find Full Text PDF

The use of mixed cultures in gas fermentations could reduce operating costs in the production of liquid chemicals such as alcohols or carboxylic acids. However, directing reducing equivalents towards the desired products presents the challenge of co-existing competing pathways. In this study, two trickle bed reactors were operated at acetogenic and chain elongating conditions to explore the fate of electron equivalents (ethanol, H, and CO) and test pH oscillations as a strategy to target chain-elongated products.

View Article and Find Full Text PDF

Catalytic Oxidation of Kraft Lignin in a Trickle-Bed Continuous Reactor.

Chempluschem

December 2024

Ircelyon, UMR 5256, CNRS, Universite Claude Bernard Lyon 12, Avenue Albert Einstein, F-69626, Villeurbanne Cedex, Lyon, France.

For the first time, the catalytic oxidation of Kraft lignin over a solid heterogeneous catalyst was studied in a continuous lab-scale trickle-bed reactor. This catalytic process is able to depolymerize Kraft lignin and produce phenolic compounds of interest such as vanillin. The impact of operating conditions such as temperature, residence time, contact time, catalyst loading and lignin concentration was evaluated.

View Article and Find Full Text PDF

Characterization of the metabolism of the yeast growing as a biofilm.

FEMS Microbes

August 2024

Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria.

Article Synopsis
  • This research focuses on a specific yeast known for its ability to adapt and produce various products from different carbon sources while existing in either planktonic (free-floating) or biofilm states.
  • The study compares the metabolic activities of the yeast in both states, using traditional stirred tank bioreactors for planktonic cultivation and trickle bed bioreactors for biofilm cultivation.
  • Results show that although biofilm cultivation has lower overall productivity, the production rate remains steady, highlighting its potential for continuous production processes when supplied with enriched oxygen.
View Article and Find Full Text PDF

Efficient strategy for employing HN-AD bacterium enhanced biofilter reactors to remove NH and reduce secondary pollution.

J Hazard Mater

December 2024

CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China. Electronic address:

Article Synopsis
  • - The study focused on using the Heterotrophic nitrification-aerobic denitrification strain Paracoccus denitrificans HY-1 in a biological trickling filter (BTF) reactor to improve ammonia (NH) removal efficiency, achieving a high rate of 96.52% under specific conditions.
  • - Results showed that after inoculation with HY-1 and using bamboo charcoal as filler, levels of ammonia and other nitrogen compounds in the circulating fluid were significantly low, indicating effective nitrification and denitrification processes.
  • - The HY-1 inoculated BTF was tested in a large-scale piggery setting, successfully removing 99.61% of ammonia and 96.63% of hydrogen
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!