Increasing shares of energy production originating from fluctuating renewable sources require measures that are able to balance power production for a stable electricity grid. H/CO biomethanation is a suitable approach to convert fluctuating excess renewable energy into the storable substitute natural gas. This study investigated the rapid load change capability of an anaerobic thermophilic trickle bed reactor while maintaining a high methane content. The return to full load (62.1 m/m/d) after a 30-min operational off-cycle was possible almost immediately, while 24-h interruptions required a 60-min stepwise load increase. To accelerate this delayed microbial conversion activity, non-steady state substrate gas conversion can be controlled via substrate and product gas flow rates, allowing to reactivate the entire microbial community and produce high quality product gas. Reactor design might be further improved to avoid short-circuiting and use the entire trickle bed gas phase as high quality gas buffer during initial load increases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2019.121735 | DOI Listing |
RSC Adv
January 2025
Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul Republic of Korea
The C chemical species, potassium formate (K(HCO)), known as a two-electron reducing agent, finds application in the synthesis of multi-carbon compounds, including oxalate, and plays a crucial role not only in the food and pharmaceutical industries but also across various sectors. However, the direct hydrogenation of CO to produce K(HCO) remains a challenge. Addressing this issue, efficient production of K(HCO) is achieved by integrating CO hydrogenation in a trickle-bed reactor using a heterogeneous catalyst with a novel separation method that utilizes potassium ions from biomass ash for formic acid derivative product isolation.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
The use of mixed cultures in gas fermentations could reduce operating costs in the production of liquid chemicals such as alcohols or carboxylic acids. However, directing reducing equivalents towards the desired products presents the challenge of co-existing competing pathways. In this study, two trickle bed reactors were operated at acetogenic and chain elongating conditions to explore the fate of electron equivalents (ethanol, H, and CO) and test pH oscillations as a strategy to target chain-elongated products.
View Article and Find Full Text PDFChempluschem
December 2024
Ircelyon, UMR 5256, CNRS, Universite Claude Bernard Lyon 12, Avenue Albert Einstein, F-69626, Villeurbanne Cedex, Lyon, France.
For the first time, the catalytic oxidation of Kraft lignin over a solid heterogeneous catalyst was studied in a continuous lab-scale trickle-bed reactor. This catalytic process is able to depolymerize Kraft lignin and produce phenolic compounds of interest such as vanillin. The impact of operating conditions such as temperature, residence time, contact time, catalyst loading and lignin concentration was evaluated.
View Article and Find Full Text PDFFEMS Microbes
August 2024
Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria.
J Hazard Mater
December 2024
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!