Phosphorus in plant cells occurs in inorganic form as both ortho- and pyrophosphate or bound to organic compounds, like e.g., nucleotides, phosphorylated metabolites, phospholipids, phosphorylated proteins, or phytate as P storage in the vacuoles of seeds. Individual compartments of the cell are surrounded by membranes that are selective barriers to avoid uncontrolled solute exchange. A controlled exchange of phosphate or phosphorylated metabolites is accomplished by specific phosphate transporters (PHTs) and the plastidial phosphate translocator family (PTs) of the inner envelope membrane. Plastids, in particular chloroplasts, are the site of various anabolic sequences of enzyme-catalyzed reactions. Apart from their role in metabolism PHTs and PTs are presumed to be also involved in communication between organelles and plant organs. Here we will focus on the integration of phosphate transport and homeostasis in signaling processes. Recent developments in this field will be critically assessed and potential future developments discussed. In particular, the occurrence of various plastid types in one organ (i.e. the leaf) with different functions with respect to metabolism or sensing, as has been documented recently following a tissue-specific proteomics approach (Beltran et al., 2018), will shed new light on functional aspects of phosphate homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2019.05.018 | DOI Listing |
Biochem Soc Trans
January 2025
Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.
Coxiella burnetii, the causative agent of human Q fever, is an obligate intracellular bacterial pathogen that replicates in a large, membrane-bound vacuole known as the Coxiella Containing Vacuole (CCV). The CCV is a unique, phagolysosome-derived vacuole with a sterol-rich membrane containing host and bacterial proteins. The CCV membrane itself serves as a barrier to protect the bacteria from the host's innate immune response, and the lipid and protein content directly influence both the CCV luminal environment and interactions between the CCV and host trafficking pathways.
View Article and Find Full Text PDFKidney Int
February 2025
Department of Pediatrics, The Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada. Electronic address:
Sodium reabsorption is tightly coupled to calcium reabsorption in the proximal tubule via the action of the Na/H exchanger isoform 3 (NHE3). Poulsen et al. provide evidence of reduced proximal calcium reabsorption in kidney tubule-specific NHE3-deficient mice that is compensated distally, unaltered phosphate homeostasis, and NHE3 involvement in the hypocalciuric effect of thiazides.
View Article and Find Full Text PDFEnviron Int
January 2025
Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032,Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China. Electronic address:
Introduction: Prenatal exposure to organophosphate esters (OPEs) and phthalic acid esters (PAEs) is ubiquitous among pregnant individuals. However, research exploring the relationship between prenatal co-exposure to OPEs and PAEs and childhood insulin function remains limited.
Methods: In this study, utilizing data from 2,246 maternal-fetal dyads in the Ma'anshan Birth Cohort, associations between co-exposure to OPEs and PAEs and insulin action were analyzed.
Proc Natl Acad Sci U S A
January 2025
Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne, Switzerland.
Understanding the role and mode of action of nutrient transporters requires information about their dynamic associations with plant membranes. Historically, apoplastic nutrient export has been associated with proteins localized at the plasma membrane (PM), while the role of endomembrane localization has been less explored. However, recent work on the PHOSPHATE 1 (PHO1) inorganic phosphate (Pi) exporter demonstrated that, although primarily localized at the Golgi and trans-Golgi network (TGN) vesicles, PHO1 does associate with the PM when clathrin-mediated endocytosis (CME) was inhibited, supporting a mechanism for Pi homeostasis involving exocytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!