The rhizomicrobiome helps the host plant to better adapt to environmental stresses. In contrast, plant-derived metabolic substances, including phytohormones, play an active role in structuring rhizomicrobiome. Although strigolactones (SLs), a group of phytohormones, serve as potential rhizosphere signaling molecules, their contributions in shaping the rice (Oryza sativa) rhizomicrobiome remain elusive. To address this issue, we compared the rhizomicrobiome of rice mutants defective in either SL biosynthesis or signaling and wild-type (WT) plants. To understand whether SL-regulated metabolic pathways shape the rhizomicrobiome, a correlation network analysis was conducted among the metabolic pathway-related genes and the rhizomicrobiome of rice. Compared to WT, higher bacterial richness (evidenced by the operational taxonomic unit richness) and lower fungal diversity (evidenced by the Shannon index) were observed in both SL deficient dwarf17 (d17) and signaling (d14) mutants. Additionally, remarkable differences were observed in the composition of a large number of bacterial communities than the fungal communities in the d17 and d14 mutants with respect to the WT. The abundance of certain beneficial bacterial taxa, including Nitrosomonadaceae and Rhodanobacter, were significantly decreased in both mutants relative to the WT. Correlation network analysis between SL-regulated metabolic pathway-associated genes and rhizomicrobiome proposed a role for SL-dependent metabolic pathways in shaping rhizomicrobiome composition. Taken together, our study suggests that SL biosynthesis and signaling play a key role in determining the rice rhizomicrobiome, directly or indirectly, through the mediation of distinct metabolic pathways. Based on our findings, the genetic modulation of rice SL biosynthesis and/or signaling pathways may help to recruit/increase the abundance of the desired rhizomicrobiome, which may assist in the stress resilience of rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2019.05.016 | DOI Listing |
Microbiol Res
May 2024
Department of Phytopathology, Federal University of Lavras, PO Box 3037, Lavras, MG 37200-900, Brazil. Electronic address:
The plant-parasitic root-knot nematode Meloidogyne exigua causes significant damage and is an important threat in Coffea arabica plantations. The utilization of plant-beneficial microbes as biological control agents against sedentary endoparasitic nematodes has been a longstanding strategy. However, their application in field conditions to control root-knot nematodes and their interaction with the rhizospheric microbiota of coffee plants remain largely unexplored.
View Article and Find Full Text PDFMicrobiome
November 2022
Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, 6708 PB, Wageningen, the Netherlands.
Background: The assembly of the rhizomicrobiome, i.e., the microbiome in the soil adhering to the root, is influenced by soil conditions.
View Article and Find Full Text PDFFront Microbiol
November 2022
Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
Plant growth-promoting microbes (PGPMs) have attracted increasing attention because they may be useful in increasing crop yield in a low-input and sustainable manner to ensure food security. Previous studies have attempted to understand the principles underlying the rhizosphere ecology and interactions between plants and PGPMs using ribosomal RNA sequencing, metagenomic sequencing, and genome-resolved metagenomics; however, these approaches do not provide comprehensive genomic information for individual species and do not facilitate detailed analyses of plant-microbe interactions. In the present study, we developed a pipeline to analyze the genomic diversity of the rice rhizosphere microbiome at single-cell resolution.
View Article and Find Full Text PDFFront Microbiol
June 2022
Department of Field Crops, Faculty of Agriculture, Van Yüzüncü Yıl University, Van, Turkey.
Salinity is one of the most damaging abiotic stresses due to climate change impacts that affect the growth and yield of crops, especially in lowland rice fields and coastal areas. This research aimed to isolate potential halotolerant plant growth-promoting rhizobacteria from different rhizo-microbiome and use them as effective bioinoculants to improve rice growth under salinity stress conditions. Bioassay using rice seedlings was performed in a randomized block design consisting of 16 treatments (control and 15 bacterial isolates) with three replications.
View Article and Find Full Text PDFSci Total Environ
October 2022
Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, 6708 PB Wageningen, the Netherlands; Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, the Netherlands. Electronic address:
The rhizosphere-associated microbiome impacts plant performance and tolerance to abiotic and biotic stresses. Despite increasing recognition of the enormous functional role of the rhizomicrobiome on the survival of wild plant species growing under harsh environmental conditions, such as nutrient, water, temperature, and pathogen stresses, the utilization of the rhizosphere microbial community in domesticated rice production systems has been limited. Better insight into how this role of the rhizomicrobiome for the performance and survival of wild plants has been changed during domestication and development of present domesticated crops, may help to assess the potential of the rhizomicrobial community to improve the sustainable production of these crops.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!