Background: Although low tidal volume is strongly recommended for acute respiratory distress syndrome (ARDS), whether or not the benefit varies according to the severity of ARDS remains unclear. This study aimed to investigate whether or not there is an interaction between low tidal volume and severity of ARDS.
Methods: This was a secondary analysis from a randomized controlled trial. The patients were subgrouped according to whether the PaO/FiO (P/F) was > 150 or ≤ 150 mmHg on day 0. The interaction between a tidal volume of 6 mL/kg and the P/F was investigated in hierarchical chi-square analysis and logistic regression models.
Results: Eight hundred and thirty-six patients with ARDS were enrolled (345 in the high P/F subgroup [> 150 mmHg] and 491 in the low P/F subgroup [≤ 150 mmHg]). Compared to the traditional tidal volume group, the mortality of patients with low tidal volume was significantly lower in the high P/F subgroup (41/183 (22.4%) vs. 64/162 (39.5%), p = 0.001) but not in the low P/F subgroup (95/256 (37.1%) vs. 96/235 (40.8%), p = 0.414). In the hierarchical chi-square analysis, the test of homogeneity was significant (risk ratio of mortality 0.56 [0.40-0.79] vs. 0.91 [0.73-1.13], p = 0.018). In the multivariable logistic model, the odds ratio of mortality for the interacted item was significant (2.02, 95% confidence interval [CI] 1.06-3.86, p = 0.033). The odds ratio of mortality for low tidal volume was significant in the high P/F subgroup (0.42, 95% CI 0.24-0.72, p = 0.002) but not in the low P/F subgroup (0.89, 95% CI 0.60-1.31, p = 0.554).
Conclusions: The benefits of low tidal volume ventilation remain uncertain in patients with severe ARDS. Further studies are needed to validate this significant interaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6626332 | PMC |
http://dx.doi.org/10.1186/s13054-019-2530-6 | DOI Listing |
Eur J Trauma Emerg Surg
January 2025
Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
Background: Flail chest (FC) injuries are segmental osseous injuries of the thorax that typically result from high-energy blunt trauma and regularly occur in multiple trauma (MT) patients. FC injuries are associated with paradoxical chest wall movements and, thus, have a high risk of respiratory insufficiency or even death. An increasing number of studies recommend an early surgical stabilization of FC injuries, but a definite trigger that would indicate surgery has, thus far, not been identified.
View Article and Find Full Text PDFBMC Pediatr
January 2025
Division of Neonatology, Pediatric Intensive Care & Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
Background: Lung ultrasound scoring is a validated tool for assessing lung pathology. However, existing scoring systems typically overlook the size of consolidations, limiting their accuracy in certain clinical scenarios.
Case Presentation: We describe the first application of adding the maximum consolidation depth in centimeters (cm) to the conventional score.
Sci Rep
January 2025
Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore, 641026, India.
Typical waveforms used for the simulation of pressure and volume-controlled ventilation in medical ventilators have been extensively studied in the literature. The majority of simulation studies reported employ the step pattern or ramp pattern to model the pressure and flow variations in pressure/volume-controlled ventilation. It was observed that the above waveforms tend to add to the discomfort level of patients due to the presence of jerks in derivatives of pressure/flow variations; the pressure/flow variation of air and oxygen mixture should be smooth so that the patient discomfort is kept at a minimal level.
View Article and Find Full Text PDFIntern Med
January 2025
Department of Respiratory Medicine, NHO Okayama Medical Center, Japan.
A 52-year-old Japanese man with a history of childhood asthma presented at our emergency department with progressive dyspnea. Despite subcutaneous adrenaline injections, salbutamol nebulization, and intravenous methylprednisolone, the carbon dioxide partial pressure (pCO) increased to 110 mmHg. The patient was intubated, and mechanical ventilation was initiated because of severe respiratory failure.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan.
Although alveolar hyperoxia exacerbates lung injury, clinical studies have failed to demonstrate the beneficial effects of lowering the fraction of inspired oxygen (FO) in patients with acute respiratory distress syndrome (ARDS). Atelectasis, which is commonly observed in ARDS, not only leads to hypoxemia but also contributes to lung injury through hypoxia-induced alveolar tissue inflammation. Therefore, it is possible that excessively low FO may enhance hypoxia-induced inflammation in atelectasis, and raising FO to an appropriate level may be a reasonable strategy for its mitigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!