Background: SiNiSan (SNS) is a traditional Chinese medicine (TCM) prescription that has been widely used in the clinical treatment of irritable bowel syndrome (IBS). However, the underlying active substances and molecular mechanisms remain obscure.
Purpose: A bioinformatics/topology based strategy was proposed for identification of the drug targets, therapeutic agents and molecular mechanisms of SiNiSan against irritable bowel syndrome.
Materials And Methods: In this work, a bioinformatics/network topology based strategy was employed by integrating ADME filtering, text mining, bioinformatics, network topology, Venn analysis and molecular docking to uncover systematically the multicomponent synergy mechanisms. In vivo experimental validation was executed in a Visceral Hypersensitivity (VHS) rat model.
Results: 76 protein targets and 109 active components of SNS were identified. Bioinformatics analysis revealed that 116 disease pathways associated with IBS therapy could be classified into the 19 statistically enriched functional sub-groups. The multi-functional co-synergism of SNS against IBS were predicted, including inflammatory reaction regulation, oxidative-stress depression regulation and hormone and immune regulation. The multi-component synergetic effects were also revealed on the herbal combination of SNS. The hub-bottleneck genes of the protein networks including PTGS2, CALM2, NOS2, SLC6A3 and MAOB, MAOA, CREB1 could become potential drug targets and Paeoniflorin, Naringin, Glycyrrhizic acid may be candidate agents. Experimental results showed that the potential mechanisms of SiNiSan treatment involved in the suppression of activation of Dopaminergic synapse and Amphetamine addiction signaling pathways, which are congruent with the prediction by the systematic approach.
Conclusion: The integrative investigation based on bioinformatics/network topology strategy may elaborate the multicomponent synergy mechanisms of SNS against IBS and provide the way out to develop new combination medicines for IBS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2019.152982 | DOI Listing |
J Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China. Electronic address:
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
The design and synthesis of metal-organic frameworks (MOFs) with outstanding light-harvesting and photoexcitation for artificial photocatalytic CO reduction is an attractive but challenging task. In this work, a novel aggregation-induced emission (AIE)-active ligand, tetraphenylpyrazine (PTTBPC) is proposed and utilized for the first time to construct a Zr-MOF photocatalyst via coordination with stable Zr-oxo clusters. Zr-MOF is featured by a scu topology with a two-fold interpenetrated framework, wherein the PTTBPC ligands enable strong light-harvesting and photoexcitation, while the Zr-oxo clusters facilitate CO adsorption and activation, as well as offer potential sites for further metal modification.
View Article and Find Full Text PDFChem Asian J
January 2025
East China University of Science and Technology, School of Materials Science and Engineering, 130# Meilong Road, Shanghai, 200237, Shanghai, CHINA.
Li-ion capacitors (LICs) integrate the desirable features of lithium-ion batteries (LIBs) and supercapacitors (SCs), but the kinetic imbalance between the both electrodes leads to inferior electrochemical performance. Thus, constructing an advanced anode with outstanding rate capability and terrific redox kinetics is crucial to LICs. Herein, heterostructured ZnS/SnS2 nanosheets encapsulated into N-doped carbon microcubes (ZnS/SnS2@NC) are successfully fabricated.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China.
Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India. Electronic address:
This review explores the progressive domain of network pharmacology and its potential to revolutionize therapeutic approaches for Interstitial Lung Diseases (ILDs), a collective term encompassing Interstitial Pneumonia, Pneumoconiosis, Connective Tissue Disease-related ILDs, and Sarcoidosis. The exploration focuses on the profound legacy of traditional medicines, particularly Ayurveda and Traditional Chinese Medicines (TCM), and their largely unexplored capacity in ILD treatment. These ancient healing systems, characterized by their holistic methodologies and multifaceted treatment modalities, offer a promising foundation for discovering innovative therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!