Objective: Paroxysmal nocturnal movements in epilepsy are a recognised phenomenon, however, the mechanisms that produce them and the effect of the underlying epilepsy still remains elusive. In this study, 10 patients were studied to define the cerebral networks corresponding to these movements and explore how epileptiform activity modulated them.
Methods: We compared the change in power of the 25-250 Hz frequency band using event-related synchronization of all stereo-EEG electrodes implanted, during a baseline segment, during nocturnal movements and seizures.
Results: The underlying network activated during these paroxysmal movements comprised the insula, anterior cingulate, premotor areas and orbitofrontal regions. Three groups emerged, (1) complete overlap, (2) no overlap and (3) partial overlap of ERS changes of the epileptogenic zone within the proposed network and correlation of semiology between nocturnal movements and seizures.
Conclusion: We conclude that nocturnal movements are due to a complex interplay within this physiological network of defined anatomical regions. Epileptic activity had significant impact on nocturnal movements but was not required for generation.
Significance: Where the semiology of the first clinical sign of a seizure consistently matches a patient's nocturnal movements, we suggest that the underlying epileptogenic zone is potentially located within this defined network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinph.2019.05.033 | DOI Listing |
Quant Imaging Med Surg
January 2025
Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Rapid eye movement sleep behavior disorder (RBD) is associated with pathological α-synuclein deposition and may have different damage directions due to α-synuclein spreading orientations. Recent functional imaging studies of Parkinson's disease (PD) with RBD have identified abnormalities in connectivity, but effective connectivity (EC) for this altered orientation is understudied. Here, we aimed to explore altered intrinsic functional connectivity (FC) and EC in PD patients with probable RBD (pRBD).
View Article and Find Full Text PDFProc Biol Sci
January 2025
Swiss Ornithological Institute, Sempach, Switzerland.
The main features of long-distance migration are derived from landbirds breeding in the Northern Hemisphere. Little is known about migration within the tropics, presumably because tropical species typically move opportunistically and over shorter distances. However, such generalizations are weakened by a lack of solid data on spatial, temporal and behavioural patterns of intra-tropical migrations.
View Article and Find Full Text PDFCurr Biol
January 2025
Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA; Actions@EBMF, New York, NY 10006, USA.
An emerging frontier in ecology explores how organisms integrate social information into movement behavior and the extent to which information exchange occurs across species boundaries. Most migratory landbirds are thought to undertake nocturnal migratory flights independently, guided by endogenous programs and individual experience. Little research has addressed the potential for social information exchange aloft during nocturnal migration, but social influences that aid navigation, orientation, or survival could be valuable during high-risk migration periods.
View Article and Find Full Text PDFMed Sci Sports Exerc
November 2024
Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, BELGIUM.
Background: Sleeping at altitude is highly common in athletes as an integral part of altitude training camps or sport competitions. However, concerns have been raised due to expected negative effects on sleep quality, thereby potentially hampering exercise recovery and next-day exercise performance. We recently showed that ketone ester (KE) ingestion beneficially impacted sleep following strenuous, late evening exercise in normoxia, and alleviated hypoxemia.
View Article and Find Full Text PDFFront Zool
January 2025
Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, 44801, Bochum, Germany.
Background: During their nighttime shoaling, the flashlight fish Anomalops katoptron produce fascinating, bioluminescent blink patterns, which have been related to the localization of food, determination of nearest neighbor distance, and initiation of the shoal's movement direction. Information transfer e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!