A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A specific UDP-glucosyltransferase catalyzes the formation of triptophenolide glucoside from Tripterygium wilfordii Hook. f. | LitMetric

A specific UDP-glucosyltransferase catalyzes the formation of triptophenolide glucoside from Tripterygium wilfordii Hook. f.

Phytochemistry

School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China. Electronic address:

Published: October 2019

Tripterygium wilfordii Hook. f. is a perennial woody vine member of the Celastraceae family. As a traditional Chinese medicine, it contains complex chemical components and exerts various pharmacological activities. In the present study, we identified a glucosyltransferase, TwUGT1, that can catalyze the synthesis of an abietane-type diterpene glucoside, namely, triptophenolide14-O-beta-D-glucopyranoside, and investigated the pharmacological activity of triptophenolide glucoside in diverse cancer cells. Triptophenolide glucoside exhibited significant inhibitory effects on U87-MG, U251, C6, MCF-7, HeLa, K562, and RBL-2H3 cells as determined by pharmacological analysis. The triptophenolide glucoside content of T. wilfordii was analyzed using Agilent Technologies 6490 Triple Quad LC/MS. The glucosyltransferase TwUGT1 belongs to subfamily 88 and group E in family 1. Molecular docking and site-directed mutagenesis of TwUGT1 revealed that the His30, Asp132, Phe134, Thr154, Ala370, Leu376, Gly382, His387, Glu395 and Gln412 residues play crucial roles in the catalytic activity of triptophenolide 14-O-glucosyltransferase. In addition, TwUGT1 was also capable of glucosylating phenolic hydroxyl groups, such as those in liquiritigenin, pinocembrin, 4-methylumbelliferone, phloretin, and rhapontigenin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2019.112062DOI Listing

Publication Analysis

Top Keywords

triptophenolide glucoside
16
tripterygium wilfordii
8
wilfordii hook
8
glucosyltransferase twugt1
8
activity triptophenolide
8
triptophenolide
5
glucoside
5
specific udp-glucosyltransferase
4
udp-glucosyltransferase catalyzes
4
catalyzes formation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!