An important prerequisite for the analysis of spike synchrony in extracellular recordings is the extraction of single-unit activity from the multi-unit signal. To identify single units, potential spikes are separated with respect to their potential neuronal origins ('spike sorting'). However, different sorting algorithms yield inconsistent unit assignments, which seriously influences subsequent spike train analyses. We aim to identify the best sorting algorithm for subthalamic nucleus recordings of patients with Parkinson's disease (experimental data ED). Therefore, we apply various prevalent algorithms offered by the 'Plexon Offline Sorter' and evaluate the sorting results. Since this evaluation leaves us unsure about the best algorithm, we apply all methods again to artificial data (AD) with known ground truth. AD consists of pairs of single units with different shape similarity embedded in the background noise of the ED. The sorting evaluation depicts a significant influence of the respective methods on the single unit assignments. We find a high variability in the sortings obtained by different algorithms that increases with single units shape similarity. We also find significant differences in the resulting firing characteristics. We conclude that Valley-Seeking algorithms produce the most accurate result if the exclusion of artifacts as unsorted events is important. If the latter is less important ('clean' data) the K-Means algorithm is a better option. Our results strongly argue for the need of standardized validation procedures based on ground truth data. The recipe suggested here is simple enough to become a standard procedure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2019.07.005 | DOI Listing |
Crit Rev Anal Chem
January 2025
Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK.
Cells are the fundamental units of life, comprising a highly concentrated and complex assembly of biomolecules that interact dynamic ally across spatial and temporal scales. Living cells are constantly undergoing dynamic processes, therefore, to understand the interactions between drug molecules and living cells is of paramount importance in the biomedical sciences and pharmaceutical development. Compared with traditional end-point assays and fixed cell analysis, analysis of drug molecules in living cells can provide more insight into the effects of drugs on cells in real-time and allowing for a better understanding of drug mechanisms and effects, which will contribute to the development of drug developing and testing and personalize medicine.
View Article and Find Full Text PDFInt J Cancer
January 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
Prostate cancer is a common malignancy that in 5%-30% leads to treatment-resistant and highly aggressive disease. Metastasis-potential and treatment-resistance is thought to rely on increased plasticity of the cancer cells-a mechanism whereby cancer cells alter their identity to adapt to changing environments or therapeutic pressures to create cellular heterogeneity. To understand the molecular basis of this plasticity, genomic studies have uncovered genetic variants to capture clonal heterogeneity of primary tumors and metastases.
View Article and Find Full Text PDFEur J Pediatr
January 2025
School of Nursing, College of Nursing, Taipei Medical University, Xinyi Dist, No. 250, Wuxing St, Taipei, 110, Taiwan.
Unlabelled: This study has the objective to translate the Cornell Assessment of Pediatric Delirium (CAPD) into Indonesian and evaluate the psychometric properties and diagnostic accuracy of the Indonesian version of the CAPD (I-CAPD) in identifying delirium in critically ill children. This prospective methodological study was conducted between January and April 2024 in a 6-bed pediatric intensive care unit (PICU). In total, 90 children aged 0-18 years hospitalized in the PICU were included.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Laboratory of Haematology and Blood Bank Unit, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece.
Background: Systemic infection (SCI) is the third most common cause of late-onset sepsis in Neonatal Intensive Care Units (NICU). While platelet involvement in fungal infections has been extensively studied, evaluation of the hemostatic mechanism in Candida infections, especially in neonates, has not been widely investigated. The aim of the current study was to evaluate the hemostatic profile of neonates with SCI through rotational thromboelastometry (ROTEM), a laboratory method that assesses the viscoelastic properties of blood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!