A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rational design of a Yarrowia lipolytica derived lipase for improved thermostability. | LitMetric

Rational design of a Yarrowia lipolytica derived lipase for improved thermostability.

Int J Biol Macromol

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, Tianjin 300457, PR China. Electronic address:

Published: September 2019

To improve the thermostability of the lipase LIP2 from Yarrowia lipolytica, molecular dynamics (MD) simulations at various temperatures were used to investigate the common fluctuation sites of the protein, which are considered to be thermally weak points. Two of these residues were selected for mutations to improve the enzyme's thermostability, and the variants predicted by MD simulations to have improved thermostability were expressed in Pichia pastoris GS115 for further investigations. According to the proline rule, the high fluctuation site S115 or V213 was replaced with proline residue, the two lipase mutants S115P and V213P were obtained. The mutant V213P exhibited evidently enhanced thermostability with an approximately 70% longer half-life at 50 °C than that of the parent LIP2 expressed in P. pastoris. The temperature optimum of V213P was 42 °C, which was about 5.0 °C higher than that of the parent LIP2, while its specific catalytic activity was comparable to that of the parent and reached 876.5 U/mg. The improved thermostability of V213P together with its high catalytic efficiency indicated that the rational design strategy employed here can be efficiently applied for structure optimization of industrially important enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.07.070DOI Listing

Publication Analysis

Top Keywords

improved thermostability
12
rational design
8
yarrowia lipolytica
8
parent lip2
8
thermostability
6
design yarrowia
4
lipolytica derived
4
derived lipase
4
lipase improved
4
thermostability improve
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!