Two new spliceostatin analogs, designed as spliceostatins J and K (1 and 2), were isolated and identified from the culture of Pseudomonas sp., along with two known ones, FR901464 (3) and spliceostatin E (4). Their structures were elucidated by detailed interpretation of their spectroscopic data, especially 2D-NMR and HR-ESI-MS. Spliceostatin J (1) represented the first example of spliceostatins bearing an unusual hexahydrofuro[3,4-b]furan moiety. Biological assay showed all the isolated compounds except 1 displayed potent cytotoxic activities against two cancer cell lines (MDA-MB-231 and A-549). Structure-activity-relationship studies revealed that the tetrahydropyran ring in spliceostatin analogs was necessary for their bioactive retention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.201900266 | DOI Listing |
Nat Commun
July 2021
Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK.
Intron selection during the formation of prespliceosomes is a critical event in pre-mRNA splicing. Chemical modulation of intron selection has emerged as a route for cancer therapy. Splicing modulators alter the splicing patterns in cells by binding to the U2 snRNP (small nuclear ribonucleoprotein)-a complex chaperoning the selection of branch and 3' splice sites.
View Article and Find Full Text PDFJ Org Chem
February 2021
AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States.
Thailanstatin A and spliceostatin D, two naturally occurring molecules endowed with potent antitumor activities by virtue of their ability to bind and inhibit the function of the spliceosome, and their natural siblings and designed analogues, constitute an appealing family of compounds for further evaluation and optimization as potential drug candidates for cancer therapies. In this article, the design, synthesis, and biological investigation of a number of novel thailanstatin A analogues, including some accommodating 1,1-difluorocyclopropyl and tetrahydrooxazine structural motifs within their structures, are described. Important findings from these studies paving the way for further investigations include the identification of several highly potent compounds for advancement as payloads for antibody-drug conjugates (ADCs) as potential targeted cancer therapies and/or small molecule drugs, either alone or in combination with other anticancer agents.
View Article and Find Full Text PDFACS Med Chem Lett
June 2020
Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan.
We designed and synthesized a novel 1,2-deoxy-pyranose and terminal epoxide methyl substituted derivatives of spliceostatin A using Julia-Kocienski olefination as a key step. With respect to the biological activity, the 1,2-deoxy-pyranose analogue of spliceostatin A suppressed AR-V7 expression at the nano level (IC = 3.3 nM).
View Article and Find Full Text PDFChem Biodivers
September 2019
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Two new spliceostatin analogs, designed as spliceostatins J and K (1 and 2), were isolated and identified from the culture of Pseudomonas sp., along with two known ones, FR901464 (3) and spliceostatin E (4). Their structures were elucidated by detailed interpretation of their spectroscopic data, especially 2D-NMR and HR-ESI-MS.
View Article and Find Full Text PDFJ Am Chem Soc
July 2018
Department of Chemistry, BioScience Research Collaborative , Rice University, 6100 Main Street , Houston , Texas 77005 , United States.
Efficient and selective total syntheses of spliceosome modulating natural products thailanstatins A-C and spliceostatin D are reported. A number of stereoselective methods for the construction of various tetrasubstituted dihydro- and tetrahydropyrans were developed as a prerequisite for the syntheses of these naturally occurring molecules and variations thereof. The pyran-forming reactions utilize a Heck/Saegusa-Ito cascade sequence to generate hydroxy α,β,γ,δ-unsaturated aldehyde precursors followed by a catalyst-controlled oxa-Michael cyclization to furnish tetrasubstituted dihydropyrans with high stereocontrol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!