Over the past few years, the interest in Resveratrol (3,4',5,-trihydroxystilbene, RSV) has increased due to the evidence found of its antioxidant action that protects biomolecules and cells from oxidative damage. The interest has been further exacerbated by the natural presence of RSV in some fruits and derivatives, especially in red wine. In this paper we present evidence of RSV capacity in protecting a deoxynucleotide, an essential constituent of DNA, from one-electron oxidation. This article evaluates the mechanism responsible for the antioxidant action of RSV, after one-electron oxidation of 2'-deoxyguanosine 5'-monophosphate (dGMP), by kinetic analysis during steady-state irradiation and laser flash photolysis experiments. Results showed that RSV protects dGMP by recovering the nucleotide from its radical, which is formed after the reaction of dGMP with the triplet excited state of the photosensitizer. In the absence of RSV, dGMP is irremediably oxidized, and if the damage occurs in dGMP located in DNA molecules, the consequences can be as serious as mutations and subsequent carcinogenic lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp03027a | DOI Listing |
ACS Omega
December 2024
State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
Due to the lower oxidation potential than natural nucleic acid bases, one-electron oxidation of DNA is usually funneled into the direction of intermediates for oxidized DNA damage like 8-oxo-7,8-dihydroadenine (8-oxoA) leading to a radical cation, which may undergo facile deprotonation. However, compared to the sophisticated studies devoted to natural bases, much less is known about the radical cation degradation behavior of an oxidized DNA base. Inspired by this, a comprehensive theoretical investigation is performed to illuminate the deprotonation of 8-oxoA radical cation (8-oxoA) in both free and encumbered context by calculating the p value and mapping the energy profiles.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Fuzhou University, Chemistry, 523 Gongye Rd, Gulou, 350000, Fuzhou, CHINA.
Heterogeneous photoelectrocatalysis systems have recently seen significant growth in organic transformations, but are limited by the inherent physicochemical properties of electrode materials. To enhance selectivity in these processes, we propose an innovative advancement in the rational design of photoanodes. Specifically, we incorporated cobalt porphyrin co-catalysts with confined Co sites onto bismuth vanadate films as a photoanode.
View Article and Find Full Text PDFSmall Methods
December 2024
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, Leninsky pr., 31, building 4, Moscow, 119071, Russia.
A novel phthalocyanine-based hybrid nanofilm is for the first time successfully applied as an oxidative platform for surface enhanced Raman spectroscopy (SERS) sensing to fine-resolve Raman-inactive compounds. The hybrid is formed by self-assembly of zinc(II) 2,3,9,10,16,17,23,24-Octa[(3',5'-dicarboxy)-phenoxy]phthalocyaninate (ZnPc*) with the solid-supported monolayer of graphene oxide (GO) mediated by zinc acetate metal cluster. Atomic force microscopy, UV-vis and fluorescence spectroscopies confirm that this simple coordination motive in combination with molecular structure of ZnPc* prevents contact quenching of the light-excited triplet state through aromatic stacking with GO particles.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
Amine oxidation is an important organic reaction for the production of high-value N-containing compounds. However, it is still challenging to control the reactivity of active N-centered radicals to selectively access N-oxidation products. Herein, this study reports the engineering of cytochrome P450BM3 into multifunctional N-oxidizing enzymes with the assistance of dual-functional small molecules (DFSM) to selectively produce N-oxygenation (i.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Lanthanide redox reactivity remains limited to one-electron transfer reactions due to their inability to access a broad range of oxidation states. Here, we show that multielectron reductive chemistry is achieved for ytterbium by using the tripodal tris(siloxide)arene redox-active ligand, which can store two electrons in the arene anchor. Reduction of the Yb(III) complex of the tris(siloxide)arene tripodal ligand affords the Yb(II) analogue by metal-centered reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!