Parkinson's disease (PD) is a common age-related neurodegenerative disease resulted from the progressive degeneration of dopaminergic neurons in the pars compacta region of substantia nigra. The goal of this study was to investigate the effects and mechanisms of long noncoding RNA (lncRNA) HAGLROS on the apoptosis and autophagy in PD. The MPTP-induced PD mouse model and MPP-intoxicated SH-SY5Y cell model were established, and the expression levels of HAGLROS and miR-100 were determined. Subsequently, the effects of suppression of HAGLROS on apoptosis and autophagy in MPTP-induced PD mouse model and in MPP-intoxicated SH-SY5Y cells were investigated. In addition, the association between HAGLROS and miR-100 as well as HAGLROS and activation of phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in MPP-intoxicated SH-SY5Y cells was explored. HAGLROS was increasingly expressed in MPTP-induced PD mouse model and MPP-intoxicated SH-SY5Y cells and suppression of HAGLRO decreased apoptosis and autophagy in both and PD models. Further studies showed that HAGLRO negatively regulated miR-100 expression, and HAGLROS regulated apoptosis and autophagy of MPP-intoxicated SH-SY5Y cells through sponging miR-100. Moreover, ATG10 was identified as a target of miR-100. Besides, suppression of HAGLROS alleviated MPP-intoxicated SH-SY5Y cell injury by activating PI3K/AKT/mTOR pathway. Our findings reveal that upregulation of HAGLROS may contribute to the development of PD via inhibiting apoptosis and autophagy, which may be achieved by regulating miR-100/ATG10 axis and PI3K/AKT/mTOR pathway activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21691401.2019.1636805 | DOI Listing |
Aim: St. John\'s Wort Oil (JWO) has a sedative property and it is used traditionally for the treatment of depression, neuralgia and excitability. JWO has been shown to have anticancer activity via apoptosis in glioblastoma cells.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Rehabilitation Medicine, The Fifth People's Hospital of Chongqing, Chongqing, China.
Background: Mitochondria, as the energy factories of cells, are involved in a wide range of vital activities, including cell differentiation, signal transduction, the cell cycle, and apoptosis, while also regulating cell growth. However, current pharmacological treatments for stroke are challenged by issues such as drug resistance and side effects, necessitating the exploration of new therapeutic strategies.
Objective: This review aims to summarize the regulatory effects of natural compounds targeting mitochondria on neuronal mitochondrial function and metabolism, providing new perspectives for stroke treatment.
Front Pharmacol
January 2025
Department of Pediatrics, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China.
Background: The glomerular podocyte endoplasmic reticulum is a critical component in renal function, yet its research landscape is not fully understood. This study aims to map the existing research on podocyte endoplasmic reticulum by analyzing publications in the Web of Science Core Collection (WOSCC) from the past 19 years.
Methods: We conducted a bibliometric analysis using Citespace, VOSviewer, the Metrology Literature Online platform, and the Bibliometrix software package to visualize and interpret the data from WOSCC.
Mitochondria are important organelles that regulate cellular energy and biosynthesis, as well as maintain the body's response to environmental stress. Their dynamics and autophagy influence occurrence of cellular function, particularly under stressful conditions. They can generate reactive oxygen species (ROS) which is a major contributor to inflammatory diseases such as ulcerative colitis (UC).
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Otolaryngology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China.
Oral cancer is a highly malignant disease characterized by recurrence, metastasis, and poor prognosis. Autophagy, a catabolic process induced under stress conditions, has been shown to play a dual role in oral cancer development and therapy. Recent studies have identified that autophagy activation in oral epithelial cells suppresses cancer cell survival by inhibiting key pathways such as the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK), while activating the adenosine monophosphate-activated protein kinase (AMPK) pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!