New Findings: What is the central question of this study? Heat stress has harmful effects on the brain structure and synaptic density via induction of oxidative stress and neuroinflammation, which result in neuronal damage in the hippocampus and thereby cognitive impairments. In this study, we investigate the effect of Rosa canina treatment on cognitive function in heat stress-exposed rats and its underlying mechanisms. What is the main finding and its importance? We show that R. canina improves cognitive deficits induced by heat stress by attenuation of oxidative stress and neuroinflammation and by upregulation of synaptic proteins in the hippocampus.
Abstract: The aim of the study was to evaluate the effects of aqueous methanolic extract of Rosa canina (RC) dried fruits on oxidative stress, inflammation, synaptic degeneration and memory dysfunction induced by heat stress (HS) in rats. Sixty adult male Wistar rats were randomly divided into five groups as follows: the control group received normal saline (NS); the HS group was exposed to heat stress (43°C) for 15 min once a day for 2 weeks; and HS+R groups were exposed to heat stress and received one of three doses (250, 500 or 1000 mg kg ) of RC methanolic extract for 2 weeks. A passive avoidance test and a Y-maze test were performed to assess learning and memory. The levels of reactive oxygen species were assessed. The serum cortisol concentration and hippocampal total antioxidant capacity, superoxide dismutase and glutathione peroxidase were also detected using spectrophotometry. The protein expressions of c-Fos, heat-shock protein-70, tumour necrosis factor-α, growth-associated protein 43, post-synaptic density-95 and synaptophysin were evaluated in the hippocampal tissue. The results showed that RC significantly improved cognitive dysfunction induced by HS, which was accompanied by downregulation of tumour necrosis factor-α and upregulation of growth-associated protein 43 and synaptophysin proteins in the hippocampus of HS-exposed rats. Furthermore, RC significantly attenuated serum cortisol concentrations and upregulated heat shock protein-70 and c-Fos in the hippocampus. In addition, the administration of RC attenuated reactive oxygen species levels and enhanced antioxidant defense in the hippocampus. These findings indicate that RC attenuated the deleterious effect of HS on cognition through its antioxidant properties and by enhancing synaptic function and plasticity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/EP087535 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!