An 8-week feeding trial was conducted to investigate effects of dietary protein levels (37, 40, and 43%) on the growth performance, feed utilization, digestive enzyme activity, and gene expressions of target of rapamycin (TOR) signaling pathway in fingerling yellow catfish. One hundred and eighty fingerlings (average weight 0.77 ± 0.03 g) were equally distributed across four replicate tanks for each of the three treatments, with 15 fish per tank. No difference (P > 0.05) was observed in initial body weight, survival rate (SR), hepatosomatic index (HSI), viscera index (VSI), dressing percentage (DP), and condition factor (CF) among all the treatments. The diet containing 40% protein increased significantly (P < 0.05) final body weight, weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio (PER), nitrogen retention (NRE), and energy retention (ERE) in fish. The highest protease activity in the stomach and intestine was observed in the P40 group (P < 0.05), while amylase and lipase were not significantly different (P > 0.05). The transcriptional levels of IGF-1, IGF-1R, and Akt were significantly (P < 0.05) higher in fish fed P40 or P43 than those of fish fed P37. TOR and S6K1 mRNA expressions were significantly (P < 0.05) increased in the P40 groups. Hence, the diet containing 40% protein would be suitable for the optimum growth and effective protein utilization of fingerling Pelteobagrus fulvidraco. In vitro, the transcriptional levels of IGF-1, IGF-1R, Akt, TOR, and S6K1 in hepatocyte supplemented with a 40-μM mixed amino acids were significantly (P < 0.05) higher compared to other treatments. No difference (P > 0.05) was observed in eukaryotic translation initiation factor 4E-binding protein 1 in vivo and in vitro among all the treatments. Effects of dietary protein level on growth performance likely are involved in the activation of TOR signaling pathway in fingerling Pelteobagrus fulvidraco.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-019-00664-zDOI Listing

Publication Analysis

Top Keywords

effects dietary
8
dietary protein
8
growth performance
8
digestive enzyme
8
enzyme activity
8
activity gene
8
gene expressions
8
tor signaling
8
signaling pathway
8
pathway fingerling
8

Similar Publications

Alternative flours can reveal beneficial health effects. The aim of this study was to evaluate and compare the effects of dietary fibers (DFs) of coconut and carob flours on colonic microbiota compositions and function. Coconut flour DFs were found to be dominated by mannose-containing polysaccharides by gas chromatography (GC)/MS and spectrophotometer, whereas glucose and uronic acid were the main monosaccharide moieties in carob flour DFs.

View Article and Find Full Text PDF

Sustainability concerns have increased consumer demand for non-animal-derived proteins and the search for novel, alternative protein sources. The nutritional sustainability of the food system without compromising the nutrient quality, composition, digestibility and consumption is pivotal. As with farmed livestock, it is imperative to ensure the well-being and food security of companion animals and to develop sustainable and affordable pet foods.

View Article and Find Full Text PDF

Introduction: The residual black wolfberry fruit (RBWF) is rich in nutrients and contains a diverse range of active substances, which may offer a viable alternative to antibiotics. This experiment was conducted to investigate the impact of varying levels of RBWF on the growth performance and rumen microorganisms of fattening sheep, and to quantify its economic benefits.

Methods: In this experiment, 40 three-month-old and male Duolang sheep with an average weight of 29.

View Article and Find Full Text PDF

Background: Creatine has anti-inflammatory, antioxidant, and immunomodulatory effects. However, its impact on tumors remains uncertain.

Methods: This study used data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2018 to investigate the relationship between dietary creatine intake and cancer in American adults.

View Article and Find Full Text PDF

Background: Recent research suggests that omega-3 fatty acids may play a role in bone metabolism through their influence on bone mineral density (BMD) and the regulation of bone turnover markers. However, epidemiological evidence linking omega-3 intake to the risk of developing osteoporosis is still emerging and remains inconclusive. This study aims to clarify the role of dietary omega-3 fatty acids in the prevention of osteoporosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!