After just more than 100 years of history of industrial acetone-butanol-ethanol (ABE) fermentation, patented by Weizmann in the UK in 1915, butanol is again today considered a promising biofuel alternative based on several advantages compared to the more established biofuels ethanol and methanol. Large-scale fermentative production of butanol, however, still suffers from high substrate cost and low product titers and selectivity. There have been great advances the last decades to tackle these problems. However, understanding the fermentation process variables and their interconnectedness with a holistic view of the current scientific state-of-the-art is lacking to a great extent. To illustrate the benefits of such a comprehensive approach, we have developed a dataset by collecting data from 175 fermentations of lignocellulosic biomass and mixed sugars to produce butanol that reported during the past three decades of scientific literature and performed an exploratory data analysis to map current trends and bottlenecks. This review presents the results of this exploratory data analysis as well as main features of fermentative butanol production from lignocellulosic biomass with a focus on performance indicators as a useful tool to guide further research and development in the field towards more profitable butanol manufacturing for biofuel applications in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598312PMC
http://dx.doi.org/10.1186/s13068-019-1508-6DOI Listing

Publication Analysis

Top Keywords

lignocellulosic biomass
12
exploratory data
12
data analysis
12
butanol production
8
production lignocellulosic
8
performance indicators
8
butanol
6
biomass revisiting
4
revisiting fermentation
4
fermentation performance
4

Similar Publications

Chromatin Regulation of Acetic Acid Stress Tolerance by Ino80 in Budding Yeast .

J Agric Food Chem

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Enhanced environmental stress tolerance is important for microbial production of biofuels and biobased chemicals. However, the roles of chromatin regulation in stress tolerance and bioproduction remain unclear. Here, we explore the effects of Ino80, the core subunit of the INO80 chromatin remodeling complex, on yeast stress adaptation.

View Article and Find Full Text PDF

The basidiomycete strain LE-BIN1700 (Agaricales, ) is able to grow on agar media supplemented with individual components of lignocellulose such as lignin, cellulose, xylan, xyloglucan, arabinoxylan, starch and pectin, and also to effectively destroy and digest birch, alder and pine sawdust. produces a unique repertoire of proteins for the saccharification of the plant biomass, including predominantly oxidative enzymes such as laccases (family AA1_1 CAZymes), GMC oxidoreductases (family AA3_2 CAZymes), FAD-oligosaccharide oxidase (family AA7 CAZymes) and lytic polysaccharide monooxygenases (family LPMO X325), as well as accompanying acetyl esterases and loosenine-like expansins. Metabolomic analysis revealed that, specifically, monosaccharides and carboxylic acids were the key low molecular metabolites in the culture liquids in the experimental conditions.

View Article and Find Full Text PDF

Systematic characterization of faecal sludge from various sources for its use as a solid fuel.

Biomass Convers Biorefin

September 2023

Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, the Netherlands.

Faecal sludge (FS) is not extensively evaluated for its potential as a solid fuel mainly due to the general conception of its "highly variable characteristics" in relation to the wide range of on-site sanitation systems. An extensive and systematic FS characterization was therefore conducted on twenty-four samples collected directly from pit latrines, ventilated improved pit latrines (VIPs) and urine-diverting dehydrating toilets (UDDTs) at two depths to understand the impact on properties relevant for combustion. The higher heating value (HHV) for these samples lies between 13 to 22 MJ/kg DM (dry matter).

View Article and Find Full Text PDF

Xylooligosaccharides: A comprehensive review of production, purification, characterization, and quantification.

Food Res Int

February 2025

Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, Ningbo 315100, China. Electronic address:

Xylooligosaccharides (XOS), short-chain polymers with prebiotic properties, have gained significant commercial attention over the past few decades due to their potential as nutraceutical components. Derived from lignocellulosic biomass (LCB), XOS serve as health promoting compounds with applications across multiple sectors, including food pharmaceutical and cosmetic. This comprehensive review provides an overview of XOS production, purification, characterization, and quantification, highlighting their derivation from various sources such as agricultural waste, agro-economical forest residues, and nutrient-dense energy crops.

View Article and Find Full Text PDF

n-Alkyltrimethylammonium bromide (CTAB)-based deep eutectic solvent (DESs) has potential in the efficient delignification and utilization of carbohydrates in biomass. In this research, DESs containing Brønsted acid and Lewis acid were prepared with CTAB (alkyl-chain length 12-18), organic acids and metal chlorides, and the optimal treatment conditions were acquired by pretreatment optimization. Through the pretreatment with TTAB/LCA/Fe (1:4:0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!