Isoflurane (ISO) post-conditioning attenuates cerebral ischemia/reperfusion (I/R) injury, but the underlying mechanism is incompletely elucidated. Transforming growth factor beta (TGF-β) and hedgehog (Hh) signaling pathways govern a wide range of mechanisms in the central nervous system. We aimed to investigate the effect of the TGF-β2/Smad3 and sonic hedgehog (Shh)/Glioblastoma (Gli) signaling pathway and their crosstalk in the hippocampus of rats with ISO post-conditioning after cerebral I/R injury. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), 1.5 h occlusion and 24 h reperfusion (MCAO/R). To assess the effect of ISO after I/R injury, various approaches were used, including neurobehavioral tests, TTC staining, HE staining, Nissl staining, TUNEL staining, immunofluorescence (IF), qRT-PCR (quantitative real-time polymerase chain reaction) and Western blot. The ISO post-conditioning group (ISO group) received 1 h ISO post-conditioning when reperfusion was initiated, leading to lower infarct volumes and neurologic deficit scores, more surviving neurons, and less damaged and apoptotic neurons. IF staining, qRT-PCR and Western blot showed high expression levels of TGF-β2, Shh and Gli1 in the hippocampal CA1 of the ISO group. Phosphorylated Smad3 (p-Smad3), Patched (Ptch), and Smoothed (Smo) were also increased at protein level in the ISO group, whereas total Smad3 expression did not change in all groups. When TGF-β2 inhibitor, pirfenidone, or Smad3 inhibitor, SIS3 HCl, were administered, the expression levels of p-Smad3 and Gli1 were reduced, and surviving pyramidal neurons decreased. By contrast, the expression levels of TGF-β2 and p-Smad3 did not change significantly after pre-injection of Smo inhibitor cyclopamine, but reduced the expression levels of Shh, Ptch, and Gli1. Moreover, Gli showed the lowest expression levels with pirfenidone combined with cyclopamine. These findings indicate that the TGF-β and hedgehog signaling pathways mediate the neuroprotection of ISO post-conditioning after cerebral I/R injury, and crosstalk between two pathways at the Gli1 level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608402 | PMC |
http://dx.doi.org/10.3389/fnins.2019.00636 | DOI Listing |
Neuroscience
May 2023
The First Affiliated Hospital of Dalian Medical University, China. Electronic address:
The purpose of the study was to investigate the effect of isoflurane postconditioning on neuron injury in MCAO (middle cerebral artery occlusion) rats and its molecular mechanism of affecting autophagy through miR-384-5p/ATG5 (autophagy-related protein 5). HT22 cells (mouse hippocampal neuronal cell line) were exposed to 1.5% isoflurane for 30 min after OGD/R (oxygen-glucose deprivation/reoxygenation).
View Article and Find Full Text PDFJ Cell Mol Med
April 2021
Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
The mechanisms of brain protection during ischaemic reperfusion injury induced by isoflurane (ISO) post-conditioning are unclear. Myocyte enhancement factor 2 (MEF2D) has been shown to promote neural survival in a variety of models, in which multiple survival and death signals converge on MEF2D and modulate its activity. Here, we investigated the effect of MEF2D on the neuroprotective effects of ISO post-conditioning on rats after cerebral ischaemia/reperfusion (I/R) injury.
View Article and Find Full Text PDFAging (Albany NY)
December 2020
Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang 471031, Henan, China.
Isoflurane (ISO) elicits protective effects on ischemia-induced brain injury. We investigated whether sub-anesthetic (0.7%) ISO post-conditioning attenuates the inflammation and apoptosis in oxygen-glucose deprivation (OGD)-insulted co-cultures (microglia and neurons) and the brain injury of the middle cerebral arterial occlusion (MCAO) rat.
View Article and Find Full Text PDFNeurochem Res
November 2019
Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832002, China.
Evidence has shown the therapeutic potential of isoflurane (ISO) in cerebral stroke. The present study investigated the mechanism of ISO on vascular endothelial growth factor (VEGF) and CD34 expression in a rat model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 1 h followed by reperfusion for 24 h in rats.
View Article and Find Full Text PDFFront Neurosci
June 2019
Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China.
Isoflurane (ISO) post-conditioning attenuates cerebral ischemia/reperfusion (I/R) injury, but the underlying mechanism is incompletely elucidated. Transforming growth factor beta (TGF-β) and hedgehog (Hh) signaling pathways govern a wide range of mechanisms in the central nervous system. We aimed to investigate the effect of the TGF-β2/Smad3 and sonic hedgehog (Shh)/Glioblastoma (Gli) signaling pathway and their crosstalk in the hippocampus of rats with ISO post-conditioning after cerebral I/R injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!