Aging-related cognitive ability impairments are one of the main threats to public health, and impaired hippocampal neurogenesis is a major cause of cognitive decline during aging. However, the regulation of adult neurogenesis in the hippocampus requires further study. Here, we investigated the role of microRNA-153 (miR-153), a highly conserved microRNA in mice and humans, in adult neurogenesis. During the passaging of neural stem cells (NSCs) in vitro, endogenous miR-153 expression was downregulated, with a decrease in neuronal differentiation ability. In addition, miR-153 overexpression increased the neurogenesis of NSCs. Further studies showed that miR-153 regulated neurogenesis by precisely targeting the Notch signaling pathway through inhibition of Jagged1 and Hey2 translation. In vivo analysis demonstrated that miR-153 expression was decreased in the hippocampi of aged mice with impaired cognitive ability, and that miR-153 overexpression in the hippocampus promoted neurogenesis and markedly increased the cognitive abilities of the aged mice. Overall, our findings revealed that miR-153 affected neurogenesis by regulating the Notch signaling pathway and elucidated the function of miR-153 in aging-related, hippocampus-dependent cognitive ability impairments, and neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206122 | PMC |
http://dx.doi.org/10.1038/s41418-019-0388-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!