Bacteria's different ways to recycle their own cell wall.

Int J Med Microbiol

Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.

Published: November 2019

The ability to recover components of their own cell wall is a common feature of bacteria. This was initially recognized in the Gram-negative bacterium Escherichia coli, which recycles about half of the peptidoglycan of its cell wall during one cell doubling. Moreover, E. coli was shown to grow on peptidoglycan components provided as nutrients. A distinguished recycling enzyme of E. coli required for both, recovery of the cell wall sugar N-acetylmuramic acid (MurNAc) of the own cell wall and for growth on external MurNAc, is the MurNAc 6-phosphate (MurNAc 6P) lactyl ether hydrolase MurQ. We revealed however, that most Gram-negative bacteria lack a murQ ortholog and instead harbor a pathway, absent in E. coli, that channels MurNAc directly to peptidoglycan biosynthesis. This "anabolic recycling pathway" bypasses the initial steps of peptidoglycan de novo synthesis, including the target of the antibiotic fosfomycin, thus providing intrinsic resistance to the antibiotic. The Gram-negative oral pathogen Tannerella forsythia is auxotrophic for MurNAc and apparently depends on the anabolic recycling pathway to synthesize its own cell wall by scavenging cell wall debris of other bacteria. In contrast, Gram-positive bacteria lack the anabolic recycling genes, but mostly contain one or two murQ orthologs. Quantification of MurNAc 6P accumulation in murQ mutant cells by mass spectrometry allowed us to demonstrate for the first time that Gram-positive bacteria do recycle their own peptidoglycan. This had been questioned earlier, since peptidoglycan turnover products accumulate in the spent media of Gram-positives. We showed, that these fragments are recovered during nutrient limitation, which prolongs starvation survival of Bacillus subtilis and Staphylococcus aureus. Peptidoglycan recycling in these bacteria however differs, as the cell wall is either cleaved exhaustively and monosaccharide building blocks are taken up (B. subtilis) or disaccharides are released and recycled involving a novel phosphomuramidase (MupG; S.aureus). In B. subtilis also the teichoic acids, covalently bound to the peptidoglycan (wall teichoic acids; WTAs), are recycled. During phosphate limitation, the sn-glycerol-3-phosphate phosphodiesterase GlpQ specifically degrades WTAs of B. subtilis. In S. aureus, in contrast, GlpQ is used to scavenge external teichoic acid sources. Thus, although bacteria generally recover their own cell wall, they apparently apply distinct strategies for breakdown and reutilization of cell wall fragments. This review summarizes our work on this topic funded between 2011 and 2019 by the DFG within the collaborative research center SFB766.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmm.2019.06.006DOI Listing

Publication Analysis

Top Keywords

cell wall
40
cell
11
wall
11
peptidoglycan
8
bacteria lack
8
anabolic recycling
8
gram-positive bacteria
8
teichoic acids
8
bacteria
7
murnac
7

Similar Publications

Background: With advancements in minimally invasive thoracic surgery techniques, such as video-assisted thoracoscopic surgery and robotic surgery, the design of vascular staplers has evolved to meet the requirements of these procedures. Consequently, newer generations of automatic staplers with improved handling and reduced size have been introduced, such as two-row staplers, which are more maneuverable and less bulky than their three-row counterparts.

Case Presentation: A 68-year-old man with lung cancer underwent a right middle and lower lobectomy due to tumor invasion into the central middle bronchial trunk, rendering the preservation of the middle lobe impossible.

View Article and Find Full Text PDF

In addressing the formidable challenge posed by methicillin-resistant Staphylococcus aureus (MRSA), this investigation elucidates a novel therapeutic paradigm by specifically targeting the virulence factor sortase A (SrtA) utilizing Tubuloside A (TnA). SrtA plays a critical role in the pathogenicity of MRSA, primarily by anchoring surface proteins to the bacterial cell wall, which is crucial for the bacterium's ability to colonize and infect host tissues. By inhibiting SrtA, TnA offers a novel and distinct strategy compared to traditional antibiotics.

View Article and Find Full Text PDF

Major ABO Incompatibility in Non-Myeloablative Hematopoietic Stem Cell Transplant for Sickle Cell Disease-Not an Insurmountable Obstacle.

Pediatr Blood Cancer

January 2025

Blood and Marrow Transplant/Cellular Therapy Program, Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.

With advances in conditioning strategies and graft-versus-host disease (GvHD) prevention, hematopoietic stem cell transplantation (HSCT) is a safe, curative treatment option for pediatric patients with sickle cell disease (SCD). However, donor options have been limited in non-myeloablative matched sibling donor (MSD) setting by excluding recipients with major ABO blood group incompatible donors due to concern of the risk of significant complications such as pure red cell aplasia (PRCA). We present three cases of successful HSCT with major ABO incompatibility with their donors, and discuss strategies to safely expand the donor pool to include these donors.

View Article and Find Full Text PDF

Concurrent variations of left testicular vessels.

Anat Cell Biol

January 2025

Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India.

Knowledge of variations of the testicular vessels is essential for urologists, radiologists, and surgeons in general, as iatrogenic injuries of these vessels may affect the spermatogenesis severely. Though variations of testicular vessels are common, combined variations of these vessels are rare. We observed concurrent variations of left testicular vessels in an adult cadaver aged 70 years.

View Article and Find Full Text PDF

Effects of simvastatin on the mevalonate pathway and cell wall integrity of Staphylococcus aureus.

J Appl Microbiol

January 2025

Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Avenida Limeira, 901, Areião, Piracicaba, SP 13414-903, Brazil.

Aims: To investigate the effects of simvastatin as an antimicrobial, considering its influence on the mevalonate pathway and on the bacterial cell wall of Staphylococcus aureus.

Methods And Results: S. aureus ATCC 29213 and 33591 were exposed to simvastatin in the presence of exogenous mevalonate to determine whether mevalonate could reverse the inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!