Background: RNA-Seq is currently the most widely used tool to analyze whole-transcriptome profiles. There are numerous commercial kits available to facilitate preparing RNA-Seq libraries; however, it is still not clear how some of these kits perform in terms of: 1) ribosomal RNA removal; 2) read coverage or recovery of exonic vs. intronic sequences; 3) identification of differentially expressed genes (DEGs); and 4) detection of long non-coding RNA (lncRNA). In RNA-Seq analysis, understanding the strengths and limitations of commonly used RNA-Seq library preparation protocols is important, as this technology remains costly and time-consuming.

Results: In this study, we present a comprehensive evaluation of four RNA-Seq kits. We used three standard input protocols: Illumina TruSeq Stranded Total RNA and mRNA kits, a modified NuGEN Ovation v2 kit, and the TaKaRa SMARTer Ultra Low RNA Kit v3. Our evaluation of these kits included quality control measures such as overall reproducibility, 5' and 3' end-bias, and the identification of DEGs, lncRNAs, and alternatively spliced transcripts. Overall, we found that the two Illumina kits were most similar in terms of recovering DEGs, and the Illumina, modified NuGEN, and TaKaRa kits allowed identification of a similar set of DEGs. However, we also discovered that the Illumina, NuGEN and TaKaRa kits each enriched for different sets of genes.

Conclusions: At the manufacturers' recommended input RNA levels, all the RNA-Seq library preparation protocols evaluated were suitable for distinguishing between experimental groups, and the TruSeq Stranded mRNA kit was universally applicable to studies focusing on protein-coding gene profiles. The TruSeq protocols tended to capture genes with higher expression and GC content, whereas the modified NuGEN protocol tended to capture longer genes. The SMARTer Ultra Low RNA Kit may be a good choice at the low RNA input level, although it was inferior to the TruSeq mRNA kit at standard input level in terms of rRNA removal, exonic mapping rates and recovered DEGs. Therefore, the choice of RNA-Seq library preparation kit can profoundly affect data outcomes. Consequently, it is a pivotal parameter to consider when designing an RNA-Seq experiment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625085PMC
http://dx.doi.org/10.1186/s12864-019-5953-1DOI Listing

Publication Analysis

Top Keywords

rna-seq library
12
library preparation
12
modified nugen
12
low rna
12
rna-seq
9
evaluation rna-seq
8
kits
8
preparation protocols
8
standard input
8
truseq stranded
8

Similar Publications

It is established that BCG vaccination results in the development of both a specific immune response to mycobacterial infections and a nonspecific (heterologous) immune response, designated as trained immunity (TRIM), to other pathogens. We hypothesized that local BCG immunization may induce an early immune response in bone marrow and spleen innate immunity cells. The early transcriptomic response of various populations of innate immune cells, including monocytes, neutrophils, and natural killer (NK) cells, to BCG vaccination was examined.

View Article and Find Full Text PDF

Evidence for the Transcription of a Satellite DNA Widely Found in Frogs.

Genes (Basel)

December 2024

Laboratório de Estudos Cromossômicos, Instituto de Biologia, Universidade de Campinas, Campinas 13083-862, SP, Brazil.

Background: The satellite DNA (satDNA) PcP190 has been identified in multiple frog species from seven phylogenetically distant families within Hyloidea, indicating its broad distribution. This satDNA consists of repeats of approximately 190 bp and exhibits a highly conserved region (CR) of 120 bp, which is similar to the transcribed region of 5S ribosomal DNA (rDNA), and a hypervariable region (HR) that varies in size and nucleotide composition among and within species. Here, to improve our understanding of PcP190 satDNA, we searched for evidence of its transcription in the available transcriptomes of (Bufonidae) and (Leptodactylidae), two phylogenetically distantly related species.

View Article and Find Full Text PDF

Clonal Tracking in the Mouse Brain with Single-Cell RNA-Seq.

Methods Mol Biol

January 2025

Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.

Lineage tracing methods enable the identification of all progeny generated by a single cell. High-throughput lineage tracing in the mammalian brain involves parallel labeling of thousands of progenitor cells with genetic barcodes in vivo followed by single-cell RNA-seq of lineage relations and cell types. Here we describe the generation of barcoded lentivirus, microinjections into the embryonic day 9.

View Article and Find Full Text PDF

Background: (Skuse) is an invasive and widespread mosquito species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. Its control heavily relies on the use of insecticides. However, the efficacy of the insecticide-based intervention is threatened by the increasing development of resistance to available insecticides.

View Article and Find Full Text PDF

Parallel analysis of phenotype, transcriptome and antigen receptor sequence in single B cells is a useful method for tracking B cell activation and maturation during immune responses. However, in most cases, the specificity and affinity of the B cell antigen receptor cannot be inferred from its sequence. Antibody cloning and expression from single B cells is then required for functional assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!