A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AAV-mediated siRNA against TRPV1 reduces nociception in a rat model of bone cancer pain. | LitMetric

AAV-mediated siRNA against TRPV1 reduces nociception in a rat model of bone cancer pain.

Neurol Res

Department of Orthpedics, The First Hospital of Harbin, Harbin , Heilongjiang Province , China.

Published: November 2019

: Bone cancer pain is characterized by moderate to severe ongoing pain that commonly requires the use of opiates. Transient receptor potential vanilloid subfamily member 1 (TRPV1), a new target of the analgesics, activated by heat, protons and capsaicin and the hot component of pepper. However, little is known of the anti-nociceptive effects of TRPV1 in cancer-induced bone pain. RNA interference (RNAi) has proven to be a powerful technique to study the function of genes by producing knock-down phenotypes. The aim of this study is to investigate the potential role of TRPV1 in rat model of bone cancer pain. : Bone cancer pain animal model was created by tumor cell implantation (TCI). An AAV-mediated siRNA against TRPV1 was intrathecally delivered into the rats. Animal behaviors were measured using a set of mechanical or electronic von Frey apparatus and hot plate. mRNA and protein expression were examined by using qPCR and western blot methods. : Mechanical threshold and paw withdrawal latency in response to thermal stimulation were significantly elevated in rats with intrathecal administration of AAV-mediated siRNA against TRPV1. Moreover, class I histone deacetylases (HDACs), which plays a critical role in the neuro-inflammation response, and TNF in the spinal cord were also significantly suppressed upon knockdown of TRPV1 by AAV-mediated siRNA against TRPV1 in rat spinal cord. : Knockdown of TRPV1 effectively ameliorated mechanical allodynia and thermal hyperalgesia induced by TCI. Our data demonstrated that modulate the expression of TRPV1 in the spinal cord could be a potential therapeutic approach for bone cancer pain.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01616412.2019.1639317DOI Listing

Publication Analysis

Top Keywords

bone cancer
20
cancer pain
20
aav-mediated sirna
16
sirna trpv1
16
spinal cord
12
trpv1
10
rat model
8
model bone
8
pain bone
8
trpv1 rat
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!