The cyclic oxidation response of Mo-14Hf-23B and Mo-14.8Zr-26B (compositions in at. %) was investigated in air at 800 °C, which is a critical temperature for Mo-based alloys because of the pesting phenomenon. Rapid oxidation was observed for the unprotected samples, and an oxidation protection coating was developed based on a preceramic polymer with silicon and boron as particulate fillers. Cyclic oxidation tests of the coated samples showed excellent oxidation protection: no Mo, Hf or Zr oxides were found after testing and a small mass gain in the initial stage of oxidation indicated the formation of a glassy protection layer on the alloys surfaces after exposure to air at 800 °C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679109 | PMC |
http://dx.doi.org/10.3390/ma12142215 | DOI Listing |
Alzheimers Dement
December 2024
Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
Background: The present study recapitulates the potency of the novel synthesized piperazine-benzoquinone derivative as a lead molecule selectively targeting AChE along with the antioxidative potential for the management of cognitive decline in Alzheimer's disease.
Method: Novel piperazine-benzoquinone derivative was synthesized implementing appropriate synthetic procedures and was characterized by various spectral and elemental techniques. The purity of this synthetic analogue was ascertained by TLC, melting point determination and elemental analyses.
Small
January 2025
State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
Dual-band tungsten oxide (WO) electrochromic films are extensively investigated, yet challenges persist regarding complex fabrication processes and limited cyclic stability. In this paper, a novel approach to prepare graphdiyne quantum dots (GDQDs) doped WO films with a hexagonal crystal structure, is presented. Structural characterization reveals that the GDQDs/WO possesses a coral-like, loose structure with high crystallinity due to the synergistic modulation of morphology and crystallinity.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.
View Article and Find Full Text PDFChemistry
January 2025
University of Regensburg, Inorganic Chemistry, Universitätsstrasse 31, D-93040, Regensburg, GERMANY.
The systematic nucleophilic functionalization of the cationic pentaphosphole ligand complex [Cp*Fe(η4-P5Me)][OTf] (A) with group 16/17 nucleophiles is reported. This method represents a highly reliable and versatile strategy for the design of novel transition-metal complexes featuring twofold substituted end-deck cyclo-P5 ligands, bearing unprecedented hetero-element substituents. By the reaction of A with classical group 16 nucleophiles, complexes of the type [Cp*Fe(η4-P5MeE)] (E = OEt (1), OtBu (2), SPh (3), SePh (4)) are obtained.
View Article and Find Full Text PDFTree Physiol
January 2025
Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
Understanding drought resistance mechanisms is crucial for breeding poplar species suited to arid and semi-arid regions. This study explored the drought responses of three newly developed 'Zhongxiong' series poplars using integrated transcriptomic and physiological analyses. Under drought stress, poplar leaves showed significant changes in differentially expressed genes (DEGs) linked to photosynthesis-related pathways, including photosynthesis-antenna proteins and carbon fixation, indicating impaired photosynthetic function and carbon assimilation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!