Cancer and mortality in relation to traffic-related air pollution among coronary patients: Using an ensemble of exposure estimates to identify high-risk individuals.

Environ Res

Dept. of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Stanley Steyer Institute for Cancer Epidemiology and Research, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Published: September 2019

AI Article Synopsis

  • Moderate correlations were found between different methods measuring traffic-related air pollution (TRAP), which can lead to misclassification of exposure among individuals.
  • The study aimed to improve exposure classification using multiple established modeling approaches and reassess connections between TRAP and cancers (lung, breast, prostate) as well as overall mortality in coronary patients.
  • Results showed that patients with higher certainty of exposure had increased risks for specific cancers and a similar trend for mortality, indicating that better exposure classification may strengthen the associations between TRAP and health outcomes.

Article Abstract

Background: Moderate correlations were previously observed between individual estimates of traffic-related air pollution (TRAP) produced by different exposure modeling approaches. This induces exposure misclassification for a substantial fraction of subjects.

Aim: We used an ensemble of well-established modeling approaches to increase certainty of exposure classification and reevaluated the association with cancers previously linked to TRAP (lung, breast and prostate), other cancers, and all-cause mortality in a cohort of coronary patients.

Methods: Patients undergoing percutaneous coronary interventions in a major Israeli medical center from 2004 to 2014 (n = 10,627) were followed for cancer (through 2015) and mortality (through 2017) via national registries. Residential exposure to nitrogen oxides (NO) -a proxy for TRAP- was estimated by optimized dispersion model (ODM) and land use regression (LUR) (r = 0.50). Mutually exclusive groups of subjects classified as exposed by none of the methods (high-certainty low-exposed), ODM alone, LUR alone, or both methods (high-certainty high-exposed) were created. Associations were examined using Cox regression models.

Results: During follow-up, 741 incident cancer cases were diagnosed and 3051 deaths occurred. Using a ≥25 ppb cutoff, compared with high-certainty low exposed, the multivariable-adjusted hazard ratios (95% confidence intervals) for lung, breast and prostate cancer were 1.56 (1.13-2.15) in high-certainty exposed, 1.27 (0.86-1.86) in LUR-exposed alone, and 1.13 (0.77-1.65) in ODM-exposed alone. The association of the former category was strengthened using more extreme NO cutoffs. A similar pattern, albeit less strong, was observed for mortality, whereas no association was shown for cancers not previously linked to TRAP.

Conclusions: Use of an ensemble of TRAP exposure estimates may improve classification, resulting in a stronger association with outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2019.108560DOI Listing

Publication Analysis

Top Keywords

traffic-related air
8
air pollution
8
exposure estimates
8
modeling approaches
8
association cancers
8
cancers linked
8
lung breast
8
breast prostate
8
methods high-certainty
8
exposure
6

Similar Publications

Particulate matter and potentially toxic element content in urban ornamental plant species to assess pollutants trapping capacity.

J Environ Manage

January 2025

Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes S/n, Apartado de Correos, 1095, 41012, Sevilla, Spain. Electronic address:

Urban environments are usually polluted by anthropogenic activities like traffic, a major source of potentially toxic elements (PTEs), and ornamental plant species may reduce contamination by trapping traffic-related air pollutants in their leaves. The purpose of this study was tested the trapping pollutant capacity of four species commonly used in green areas of Seville city (SW Spain) to better choose species in urban green planning. Composition of particulate matter (PM) obtained from foliar surfaces (sPM) and wax-included (wPM) was determined by EDX-SEM analysis in samples from different city locations.

View Article and Find Full Text PDF

Significant NO Formation in Truck Exhaust Plumes and Its Association with Ambient O: Evidence from Extensive Plume-Chasing Measurements.

Environ Sci Technol

January 2025

School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China.

Vehicle nitrogen oxides (NO) significantly increase nitrogen dioxide (NO) exposure in traffic-related environments. The NO/NO ratios are crucial for accurate NO modeling and are closely linked to public health concerns. In 2020, we used a mobile platform to follow test trucks (plume-chasing) that were installed with a portable emission measuring system (PEMS) on two restricted driving tracts.

View Article and Find Full Text PDF

Traffic-related air pollution (TRAP) exposure, lung function, airway inflammation and expiratory microbiota: A randomized crossover study.

Ecotoxicol Environ Saf

January 2025

College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Traffic-related air pollution (TRAP) has been linked with numerous respiratory diseases. Recently, lung microbiome is proposed to be characterized with development and progression of respiratory diseases. However, the underlying effects of TRAP exposure on lung microbiome are rarely explored.

View Article and Find Full Text PDF

Background: Billions of dollars have been spent implementing regulations to reduce traffic-related air pollution (TRAP) from exhaust pipe emissions. However, few health studies have evaluated the change in TRAP emissions and associations with infant health outcomes. We hypothesize that the magnitude of association between vehicle exposure measures and adverse birth outcomes has decreased over time, parallelling regulatory improvements in exhaust pipe emissions.

View Article and Find Full Text PDF

Neonatal intensive care admissions and exposure to satellite-derived air pollutants in the United States, 2018.

Sci Rep

January 2025

Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 270 Farber Hall, Buffalo, NY, USA.

In the United States (US), neonatal intensive care units (NICUs) monitor and treat newborns for a variety of adverse health concerns including preterm status, respiratory distress and restricted growth. As such, NICU admission is an integrated measure of neonatal risk. We linked 2018 US national birth registry NICU admission data among singleton births with satellite and modelled air pollution levels for the month prior to birth to examine whether late-pregnancy exposure to ambient air pollutants is associated with adverse neonatal health outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!