Background: Moderate correlations were previously observed between individual estimates of traffic-related air pollution (TRAP) produced by different exposure modeling approaches. This induces exposure misclassification for a substantial fraction of subjects.
Aim: We used an ensemble of well-established modeling approaches to increase certainty of exposure classification and reevaluated the association with cancers previously linked to TRAP (lung, breast and prostate), other cancers, and all-cause mortality in a cohort of coronary patients.
Methods: Patients undergoing percutaneous coronary interventions in a major Israeli medical center from 2004 to 2014 (n = 10,627) were followed for cancer (through 2015) and mortality (through 2017) via national registries. Residential exposure to nitrogen oxides (NO) -a proxy for TRAP- was estimated by optimized dispersion model (ODM) and land use regression (LUR) (r = 0.50). Mutually exclusive groups of subjects classified as exposed by none of the methods (high-certainty low-exposed), ODM alone, LUR alone, or both methods (high-certainty high-exposed) were created. Associations were examined using Cox regression models.
Results: During follow-up, 741 incident cancer cases were diagnosed and 3051 deaths occurred. Using a ≥25 ppb cutoff, compared with high-certainty low exposed, the multivariable-adjusted hazard ratios (95% confidence intervals) for lung, breast and prostate cancer were 1.56 (1.13-2.15) in high-certainty exposed, 1.27 (0.86-1.86) in LUR-exposed alone, and 1.13 (0.77-1.65) in ODM-exposed alone. The association of the former category was strengthened using more extreme NO cutoffs. A similar pattern, albeit less strong, was observed for mortality, whereas no association was shown for cancers not previously linked to TRAP.
Conclusions: Use of an ensemble of TRAP exposure estimates may improve classification, resulting in a stronger association with outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2019.108560 | DOI Listing |
J Environ Manage
January 2025
Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes S/n, Apartado de Correos, 1095, 41012, Sevilla, Spain. Electronic address:
Urban environments are usually polluted by anthropogenic activities like traffic, a major source of potentially toxic elements (PTEs), and ornamental plant species may reduce contamination by trapping traffic-related air pollutants in their leaves. The purpose of this study was tested the trapping pollutant capacity of four species commonly used in green areas of Seville city (SW Spain) to better choose species in urban green planning. Composition of particulate matter (PM) obtained from foliar surfaces (sPM) and wax-included (wPM) was determined by EDX-SEM analysis in samples from different city locations.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China.
Vehicle nitrogen oxides (NO) significantly increase nitrogen dioxide (NO) exposure in traffic-related environments. The NO/NO ratios are crucial for accurate NO modeling and are closely linked to public health concerns. In 2020, we used a mobile platform to follow test trucks (plume-chasing) that were installed with a portable emission measuring system (PEMS) on two restricted driving tracts.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
Traffic-related air pollution (TRAP) has been linked with numerous respiratory diseases. Recently, lung microbiome is proposed to be characterized with development and progression of respiratory diseases. However, the underlying effects of TRAP exposure on lung microbiome are rarely explored.
View Article and Find Full Text PDFInt J Epidemiol
December 2024
School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA.
Background: Billions of dollars have been spent implementing regulations to reduce traffic-related air pollution (TRAP) from exhaust pipe emissions. However, few health studies have evaluated the change in TRAP emissions and associations with infant health outcomes. We hypothesize that the magnitude of association between vehicle exposure measures and adverse birth outcomes has decreased over time, parallelling regulatory improvements in exhaust pipe emissions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 270 Farber Hall, Buffalo, NY, USA.
In the United States (US), neonatal intensive care units (NICUs) monitor and treat newborns for a variety of adverse health concerns including preterm status, respiratory distress and restricted growth. As such, NICU admission is an integrated measure of neonatal risk. We linked 2018 US national birth registry NICU admission data among singleton births with satellite and modelled air pollution levels for the month prior to birth to examine whether late-pregnancy exposure to ambient air pollutants is associated with adverse neonatal health outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!