Perennial plants and their associated microorganisms grow in the areas that may be contaminated with long-lived gamma-emitting radionuclides. This will induce gamma stress response in plants and their accompanying microorganisms. The present work investigated the growth and physiological responses of Epichloe endophyte infected tall fescue to gamma radiation, as well as whether the endophyte could persist and infect the host plant once exposed to gamma radiation. Seeds of Iranian native genotype of 75B of tall fescue were exposed to different doses, including 5.0, 10.0, 15.0, 20.0, 30.0 and 40.0 krad of gamma ray from a Co source. Irradiated and unirradiated seeds were sown in pots and grown under controlled conditions in the greenhouse. The growth and physiological parameters associated with plant tolerance to oxidative stress of host plants, as well as endophytic infection frequency (% of plants infected) and intensity (mean number of endophytic hyphae per the field of view), were examined in 3 months-old seedlings. The results indicated that all gamma radiation doses (except 5.0 kr) significantly reduced the height and survival percentage of the host plant. Days to the emergence of seedling increased gradually as gamma doses rose. A dose-rate dependent induction was seen for photosynthetic pigments and proline content. Malondialdehyde (MDA) content grew with elevation of irradiation doses. Depending on the dose and time, the activities of antioxidant enzymes in the host plant responded differently to gamma radiation. Gamma radiation altered the enzyme activities with sever decline in SOD and CAT activities. However, it had barely any effect on in APX and POD activities. The results also revealed that the persistence and intensity of endophyte were affected after gamma-ray irradiation. The initial percentage of tall fescue seeds infected with the endophyte was 91% in un-irradiated seeds. Presence of the viable endophyte started to decline significantly (23%) at 5.0 kr of gamma radiation. A dramatic reduction in the presence and intensity of endophyte occurred at 10.0 to 40.0 kr intensities. Gamma radiation × trait (GT)-biplot analysis indicated positive correlations between the endophyte symbiosis and antioxidant enzyme activities. Also, negative correlations were observed between the endophyte and MDA content in the host plant. Our results suggest that radiation stress (doses over 5.0 kr) caused reduction in the growth and antioxidant enzyme activities of the host plant that accompanied by a dramatic reduction in the persistence and intensity of endophyte fungi. Our findings have provided the basic information for future studies on the effect of gamma irradiation on the interaction between endophytic fungi and its host plant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.109412DOI Listing

Publication Analysis

Top Keywords

gamma radiation
24
host plant
24
tall fescue
16
gamma
12
enzyme activities
12
intensity endophyte
12
endophyte
10
gamma ray
8
growth physiological
8
mda content
8

Similar Publications

Introduction: Brain arteriovenous malformations (AVM) are complex vascular pathologies with a significant risk of hemorrhage. Stereotactic radiosurgery (SRS) is an effective treatment modality for AVM, initially popularized on the Gamma Knife (Elekta AB, Stockholm, Sweden) platform, and now benefits from the modern advances in linear accelerator (LINAC)-based platforms. This study evaluates the outcomes of LINAC-based SRS/hypofractionated stereotactic radiotherapy (hFSRT) for cerebral AVMs.

View Article and Find Full Text PDF

Eu-Gd co-doped glasses composed of 15BO-12SiO-(40-x)TeO-3EuO-xGdO-12BiO-8BaO-10ZnO with x = 0-4 mol% (coded as EuGd-x) were fabricated using melt quench approach to develop transparent radiation shielding system. Their structural, optical and mechanical properties were examined. 5.

View Article and Find Full Text PDF

The presented work is dedicated to the detection of hydrogen, using detectors based on a MAPD (Micropixel Avalanche Photodiode) array based on new MAPD-3NM-2 type photodiodes and two different scintillators (LaBr(Ce) and LSO(Ce)). The physical parameters of the MAPD photodiode used in the study and the intrinsic background of the scintillators were investigated. For the 2.

View Article and Find Full Text PDF

This study shows an implementation of neutron-gamma pulse shape discrimination (PSD) using a two-dimensional convolutional neural network. The inputs to the network are snapshots of the unprocessed, digitized signals from a BC501A detector. By exposing a BC501A detector to a Cf-252 source, neutron and gamma signals were collected to create a training dataset.

View Article and Find Full Text PDF

Validation of a Monte Carlo-based dose calculation engine including the 1.5 T magnetic field for independent dose-check in MRgRT.

Phys Med

January 2025

Department of Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni 5, 37024 Negrar di Valpolicella, VR, Italy; University of Brescia, Brescia, Italy.

Purpose: Adaptive MRgRT by 1.5 T MR-linac requires independent verification of the plan-of-the-day by the primary TPS (Monaco) (M). Here we validated a Monte Carlo-based dose-check including the magnetostatic field, SciMoCa (S).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!