Cardiomyocyte injury caused by excessive oxidative stress underlies the pathogenesis of myocardial infarction (MI), a devastating disease leading to heart failure and death. The Krüppel-like factor 9 (KLF9) is a transcriptional factor that has recently been reported to regulate oxidative stress, however, whether it is associated with cardiomyocyte injury and MI is unknown. We found that KLF9 was upregulated in the heart from a rat MI model. In addition, KLF9 was also upregulated in cardiomyocytes exposed to ischemia in vitro, suggesting that KLF9 responds to MI-relevant stimuli. Moreover, KLF9 knockdown protected cardiomyocytes against ischemic injury. Mechanistically, KLF9 knockdown reduced reactive oxygen species (ROS) generation in ischemic cardiomyocytes through upregulating the antioxidant thioredoxin reductase 2 (Txnrd2), and more important, Txnrd2 silencing abrogated KLF9 knockdown-mediated cardioprotection in ischemic cardiomyocytes. Altogether, these results suggest that KLF9 aggravates ischemic injury in cardiomyocytes through undermining Txnrd2-mediated ROS clearance, which might offer KLF9 as a possible target in alleviating MI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2019.116641DOI Listing

Publication Analysis

Top Keywords

ischemic injury
12
oxidative stress
12
klf9
10
klf9 aggravates
8
aggravates ischemic
8
injury cardiomyocytes
8
cardiomyocyte injury
8
klf9 upregulated
8
klf9 knockdown
8
ischemic cardiomyocytes
8

Similar Publications

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

While internal hernias are rare in the paediatric population, it should be considered as a cause for an acute abdomen following blunt trauma. Internal hernias represent a surgical emergency that requires prompt recognition due to the high risk of strangulation and ischaemia of affected bowel loops. The case of a transomental hernia (TOH) is described in a young girl.

View Article and Find Full Text PDF

Objective: Frailty has become an increasingly recognized perioperative risk stratification tool. While frailty has been strongly correlated with worsening surgical outcomes, the individual determinants of frailty have rarely been investigated in the setting of aortic disease. The aim of this study was to examine the determinants of an 11-factor modified frailty index (mFI-11) on mortality and postoperative complications in patients undergoing endovascular aortic aneurysm repair (EVAR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!