In recent years, image processing in a Euclidean domain has been well studied. Practical problems in computer vision and geometric modeling involve image data defined in irregular domains, which can be modeled by huge graphs. In this paper, a wavelet frame-based fuzzy C -means (FCM) algorithm for segmenting images on graphs is presented. To enhance its robustness, images on graphs are first filtered by using spatial information. Since a real image usually exhibits sparse approximation under a tight wavelet frame system, feature spaces of images on graphs can be obtained. Combining the original and filtered feature sets, this paper uses the FCM algorithm for segmentation of images on graphs contaminated by noise of different intensities. Finally, some supporting numerical experiments and comparison with other FCM-related algorithms are provided. Experimental results reported for synthetic and real images on graphs demonstrate that the proposed algorithm is effective and efficient, and has a better ability for segmentation of images on graphs than other improved FCM algorithms existing in the literature. The approach can effectively remove noise and retain feature details of images on graphs. It offers a new avenue for segmenting images in irregular domains.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2019.2921779DOI Listing

Publication Analysis

Top Keywords

images graphs
32
segmenting images
12
images
9
graphs
9
wavelet frame-based
8
frame-based fuzzy
8
irregular domains
8
fcm algorithm
8
segmentation images
8
fuzzy c-means
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!