Chromosome aberrations (CAs) are one of the effects of radiation exposure and can have implications for human health in the space environment, since they are related to cancer risk. In radiation research, chromosome aberrations are a convenient biomarker for carcinogenesis. To shed light on the formation and quality of chromosome aberrations in the space environment, many experiments and simulations have been performed using chromosome aberrations in human cells, induced by heavy ions, which are present in galactic cosmic rays (GCRs). In this work, the new simulation program, radiation-induced tracks, chromosome aberrations, repair and damage (RITCARD), is presented. This software program is based on the algorithm used in the NASA Radiation Track Image (NASARTI) model with some improvements. NASARTI and RITCARD are both comprised of four parts: a random walk (RW) algorithm for simulating chromosomes in a nucleus; a deoxyribonucleic acid (DNA) damage algorithm; a break repair process; and a function to assess and count chromosome aberrations. Prior to running RITCARD, the code, relativistic ion tracks (RITRACKS), is used to simulate detailed radiation track structure and calculate time-dependent differential voxel dose maps in a parallelepiped centered on a cell nucleus. The RITCARD program reads the pre-calculated voxel dose and locates the intersections between the voxels and the chromosomes that were simulated by random walk. Radiation-induced breaks occur strictly at these intersections with a probability that is a function of the voxel dose. When a break occurs in the random walk, the corresponding chromosome piece is cut into two fragments where each has a free end at the position of the break. RITCARD generates a collection of all fragments, free ends, and enlists free end pairs. In the next step, the algorithm simulates the time-dependent rejoining of free end pairs, using different probabilities for pairs originating from a given break (proper) or from different breaks (improper), which results in the formation of fragment sequences. By grouping these sequences, the program determines the number and types of aberrations, based on the same criteria used in our experiment. The new program is used to assess the yields of various types of chromosome aberrations in human fibroblast cells for several ions (H, He, C, O, Ne, Si, Ti and Fe) with energies varying from 10 to 1,000 MeV/n. The results show linear and linear-quadratic dose dependence for most chromosome aberrations types. The calculation results were compared with those obtained by fluorescence hybridization (FISH) experiments that were performed by our group. The simulations and experiments are in better agreement at lower LET. Regarding the simulation results, the coefficient of the linear part of the dose-dependence curve also peaks at an LET value of approximately 100 keV/lm, which evokes a relative biological effectiveness (RBE) peak found by other researchers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RR15250.1 | DOI Listing |
Int J Mol Sci
January 2025
Department of Neurology, Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, 4099-001 Porto, Portugal.
Chromosomal aberrations are rare but known causes of movement disorders, presenting with broad phenotypes in which dystonia may be predominant. During the investigation of such cases, chromosomal studies are not often considered as a first approach. In this article, the authors describe a family affected by a generalized form of dystonia, evolving from a focal phenotype, for which a new X chromosome large duplication was found to be the likely causative, therefore highlighting the role of such studies when facing complex movement disorders.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID 83844, USA.
Background: Lamb health is crucial for producers; however, the percentage of lambs that die before weaning is still 15-20%. One factor that can contribute to lamb deaths is congenital diseases. A novel semi-lethal disease has been identified in newborn Polypay lambs and termed dozer lamb syndrome.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA.
Background/objectives: Strabismus is the most common ocular disorder of childhood. Three rare, recurrent genetic duplications have been associated with both esotropia and exotropia, but the mechanisms by which they contribute to strabismus are unknown. This work aims to investigate the mechanisms of the smallest of the three, a 23 kb duplication on chromosome 4 (hg38|4:25,554,985-25,578,843).
View Article and Find Full Text PDFGenes (Basel)
January 2025
Section of Cytogenetics, Oncology Department, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy.
22q11.2 is a region prone to chromosomal rearrangements due to the presence of eight large blocks of low-copy repeats (LCR22s). The 3 Mb 22q11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!