Tea plant is an important economic crop on a global scale. Its yield and quality are affected by abiotic stress. The calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) family genes play irreplaceable roles in plant development and stress resistance. More and more CBL-CIPK genes have been identified, but a few CBL-CIPK genes have been cloned and characterized in tea plants. In this study, 7 and 18 were identified based on the tea plant genome. Physicochemical properties, phylogenetic, conserved motifs, gene structure, homologous gene network, and promoter upstream elements of these 25 genes were analyzed. Conserved motifs of these genes varied with phylogenetic tree node. From the genetic structure, members of the tea plant CIPK gene family can be divided into two types: intron rich and no intron. Many stress-related elements were found in the 2000 bp upstream of the promoter, and PlantCARE predicted that contained 30 stress-related elements. PlantPAN2 shows that contains 48 ABRELATERD1; contains 37 GT1CONSENSUS; contains 64 MYBCOREATCYCB1; contains 52 SORLIP1AT; contains 65 SURECOREATSULTR11; and contains 83 WBOXATNPR1. In addition, eight genes were selected for quantitative real-time PCR (RT-qPCR) to detect their expression profiles under high-temperature, low-temperature, salt, and drought treatments. These genes were found to be responsive to one or more abiotic stress treatments. The expression levels of , and were similar, and they were homologous to and and in Arabidopsis, which were involved in the SOS pathway. This study provides insight into the potential functions of the CsCBL and CsCIPK of tea plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/dna.2019.4697 | DOI Listing |
Curr Nutr Rep
January 2025
Research and Development cell, Department of Intellectual property Rights, Lovely Professional University, Jalandhar- Delhi Grand Trunk Rd., Phagwara, Punjab, 144411, India.
Purpose Of Review: This review explores the mechanistic pathways and clinical implications of phytochemicals in obesity management, addressing the global health crisis of obesity and the pressing need for effective, natural strategies to combat this epidemic.
Recent Findings: Phytochemicals demonstrate significant potential in obesity control through various molecular mechanisms. These include the modulation of adipogenesis, regulation of lipid metabolism, enhancement of energy expenditure, and suppression of appetite.
Clin Oral Investig
January 2025
Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland.
Objective: Aim of this study was to critically appraise clinical evidence on the potential benefits of adjunctive use of superfoods green tea and turmeric as mouthrinse or local delivery agents in the treatment of periodontal disease.
Materials And Methods: Electronic searches were performed in four databases for randomized trials from inception to February 2024 assessing the supplemental use of superfoods green tea and turmeric for gingivitis/periodontitis treatment. After duplicate study selection, data extraction, and risk-of-bias assessment with the RoB 2 tool, random-effects meta-analyses of Mean Differences (MD) or Standardized Mean Differences (SMD) with their 95% confidence intervals (CI) were performed.
J Ethnopharmacol
January 2025
Biochemistry Department, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil; Center for Therapeutic Innovation Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, Brazil. Electronic address:
Ethnopharmacological Relevance: Anxiety and depression are leading causes of disability worldwide, often exacerbated by chronic stress. Schinus terebinthifolia Raddi. has been used in traditional medicine for several purposes.
View Article and Find Full Text PDFHortic Res
January 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
The circadian clock mediates metabolic functions of plants and rhythmically shapes structure and function of microbial communities in the rhizosphere. However, it is unclear how the circadian rhythm of plant hosts regulates changes in rhizosphere bacterial and fungal communities and nutrient cycles. In the present study, we measured diel changes in the rhizosphere of bacterial and fungal communities, and in nitrogen (N) and phosphorus (P) cycling in 20-year-old tea plantations.
View Article and Find Full Text PDFJ Food Sci
January 2025
Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.
Oolong tea, a popular traditional Chinese tea, possesses various bioactivities, but little is known about its roles in the protection against pathogens, such as Staphylococcus aureus, in vivo. This study investigated the roles of the water-soluble oolong tea extracts (OTE) on S. aureus infection in Caenorhabditis elegans, a promising model to study the host-microbe interactions in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!