Water and ligand binding play critical roles in the structure and function of proteins, yet their binding sites and significance are difficult to predict a priori. Multiple solvent crystal structures (MSCS) is a method where several X-ray crystal structures are solved, each in a unique solvent environment, with organic molecules that serve as probes of the protein surface for sites evolved to bind ligands, while the first hydration shell is essentially maintained. When superimposed, these structures contain a vast amount of information regarding hot spots of protein-protein or protein-ligand interactions, as well as conserved water-binding sites retained with the change in solvent properties. Optimized mining of this information requires reliable structural data and a consistent, objective analysis tool. Detection of related solvent positions (DRoP) was developed to automatically organize and rank the water or small organic molecule binding sites within a given set of structures. It is a flexible tool that can also be used in conserved water analysis given multiple structures of any protein independent of the MSCS method. The DRoP output is an HTML format list of the solvent sites ordered by conservation rank in its population within the set of structures, along with renumbered and recolored PDB files for visualization and facile analysis. Here, we present a previously unpublished set of MSCS structures of bovine pancreatic ribonuclease A (RNase A) and use it together with published structures to illustrate the capabilities of DRoP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.25781 | DOI Listing |
J Chem Inf Model
January 2025
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.
The rise of resistance to antiretroviral drugs due to mutations in human immunodeficiency virus-1 (HIV-1) protease is a major obstacle to effective treatment. These mutations alter the drug-binding pocket of the protease and reduce the drug efficacy by disrupting interactions with inhibitors. Traditional methods, such as biochemical assays and structural biology, are crucial for studying enzyme function but are time-consuming and labor-intensive.
View Article and Find Full Text PDFCurr Comput Aided Drug Des
January 2025
Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Deoghat, Jhalwa, Prayagraj Uttar Pradesh, 211015, India.
Introduction: Multidrug-resistant (MDR) E. coli presents a significant challenge in clinical settings, necessitating the exploration of novel therapeutic agents. Phytochemicals from Punica granatum (pomegranate) leaves have shown potential antibacterial properties.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
The elementary mechanism and site studies of nanozyme-based inhibition reactions are ambiguous and urgently require advanced nanozymes as mediators to elucidate the inhibition effect. To this end, we develop a class of nanozymes featuring single Cu-N catalytic configurations and B-O sites as binding configurations on a porous nitrogen-doped carbon substrate (B/Cu) for inducing modulable inhibition transfer at the atomic level. The full redistribution of electrons across the Cu-N sites, induced by B-O sites incorporation, yields B/Cu with enhanced peroxidase-like activity versus Cu.
View Article and Find Full Text PDFQ Rev Biophys
January 2025
Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland.
The GABA type A receptor (GABAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, Republic of Korea.
Ruthenium (Ru)-based electrocatalysts have shown promise for anion exchange membrane water electrolysis (AEMWE) due to their ability to facilitate water dissociation in the hydrogen evolution reaction (HER). However, their performance is limited by strong hydrogen binding, which hinders hydrogen desorption and water re-adsorption. This study reports the development of RuNi nanoalloys supported on MoO, which optimize the hydrogen binding strength at Ru sites through modulation by adjacent Ni atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!