How does genome size affect the evolution of pollen tube growth rate, a haploid performance trait?

Am J Bot

Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996, U.S.A.

Published: July 2019

Premise: Male gametophytes of most seed plants deliver sperm to eggs via a pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern attributed to more effective haploid selection under stronger pollen competition. Paradoxically, whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms. Pollen tube polyploidy should initially accelerate PTGR because increased heterozygosity and gene dosage should increase metabolic rates. However, polyploidy should also independently increase tube cell size, causing more work which should decelerate growth. We asked how genome size changes have affected the evolution of seed plant PTGRs.

Methods: We assembled a phylogenetic tree of 451 species with known PTGRs. We then used comparative phylogenetic methods to detect effects of neo-polyploidy (within-genus origins), DNA content, and WGD history on PTGR, and correlated evolution of PTGR and DNA content.

Results: Gymnosperms had significantly higher DNA content and slower PTGR optima than angiosperms, and their PTGR and DNA content were negatively correlated. For angiosperms, 89% of model weight favored Ornstein-Uhlenbeck models with a faster PTGR optimum for neo-polyploids, whereas PTGR and DNA content were not correlated. For within-genus and intraspecific-cytotype pairs, PTGRs of neo-polyploids < paleo-polyploids.

Conclusions: Genome size increases should negatively affect PTGR when genetic consequences of WGDs are minimized, as found in intra-specific autopolyploids (low heterosis) and gymnosperms (few WGDs). But in angiosperms, the higher PTGR optimum of neo-polyploids and non-negative PTGR-DNA content correlation suggest that recurrent WGDs have caused substantial PTGR evolution in a non-haploid state.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajb2.1326DOI Listing

Publication Analysis

Top Keywords

pollen tube
16
dna content
16
genome size
12
ptgr dna
12
ptgr
10
tube growth
8
ptgr optimum
8
optimum neo-polyploids
8
pollen
5
tube
5

Similar Publications

Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.

View Article and Find Full Text PDF

Phosphatidic Acid Signaling in Modulating Plant Reproduction and Architecture.

Plant Commun

December 2024

Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA. Electronic address:

Phosphatidic acid (PA) is an important class of signaling lipids involved in various biological processes in plants. Functional characterization of the mutants of PA's metabolizing enzymes coupled with lipidomics and protein-lipid interaction analyses have revealed that PA signaling is involved in plant response to biotic and abiotic stress. Moreover, PA and its metabolizing enzymes have been found to affect various reproductive steps, including gametogenesis, pollen tube growth, self-incompatibility, haploid embryo formation, embryogenesis, and seed development.

View Article and Find Full Text PDF

Pollen development and germination play a crucial role in the sexual reproduction of plants. This study analysis of transcriptional dynamics of foxtail millet pollen with other tissues and organs (ovule, glume, seedling and root) through RNA-sequencing revealed that a total of 940 genes were up-regulated in foxtail millet pollen. Based on this, we analyzed the genes involved in pollen tube growth of receptor kinases and small peptides, calcium signaling, small G proteins, vesicle transport, cytoskeleton, cell wall correlation, and transcription factors that are up-regulated in pollen.

View Article and Find Full Text PDF

Systematic investigation and validation of peanut genetic transformation via the pollen tube injection method.

Plant Methods

December 2024

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China.

Genetic transformation is a pivotal approach in plant genetic engineering. Peanut (Arachis hypogaea L.) is an important oil and cash crop, but the stable genetic transformation of peanut is still difficult and inefficient.

View Article and Find Full Text PDF

Several agriculturally valuable plants store their pollen in tube-like poricidal anthers, which release pollen through buzz pollination. In this process, bees rapidly vibrate the anther using their indirect flight muscles. The stiffness and resonant frequency of the anther are crucial for effective pollen release, yet the impact of turgor pressure on these properties is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!