Background: The presence of acrylamide in food has attracted wide attention and has raised concerns due to its potential toxic and carcinogenic effects. The phenolic compounds in buckwheat display strong antioxidant activity, which may affect the acrylamide levels. The aims of this study were to evaluate the effect of buckwheat extracts on acrylamide formation and the quality of the bread, and to investigate possible inhibitory mechanisms.
Results: The extracts from Tartary buckwheat seeds, Tartary buckwheat sprouts, common buckwheat seeds, and common buckwheat sprouts reduced acrylamide level in bread by 23.5, 27.3, 17.0, and 16.7%, respectively. In addition, all four buckwheat extracts significantly (P < 0.05) reduced acrylamide levels in the asparagine / glucose system. There were significant positive correlations between total phenolic compound content, the antioxidant activity of the extracts, and the reduction in the acrylamide level. Evaluation of the organoleptic and textural properties indicated that the addition of the extracts did not significantly affect the crust color, aroma, taste, crumb appearance, and hardness of the bread.
Conclusion: This study showed that proper use of buckwheat extracts can reduce acrylamide levels in bread without having a significant impact on their properties. The study also revealed that a possible acrylamide formation inhibitory mechanism involved the Maillard reaction through the asparagine / glucose pathway. The study also provided useful information for the further application of buckwheat in improving food safety. © 2019 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.9927 | DOI Listing |
Molecules
January 2025
Apiculture Division, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland.
Honey contains natural biologically active compounds, and its preventive and healing properties are primarily linked to its antioxidant activity. The antioxidant properties of honey can be related to the botanical origin and content of phenolic compounds. We tested 84 honey samples from Poland, representing eight honey varieties: acacia, phacelia, buckwheat, linden, rapeseed, heather, goldenrod, and honeydew.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland.
Background: Tartary buckwheat is a plant recognized for its resistance to various environmental stresses. Due to its valuable source of phenolic compounds, is also characterized as a medicinal plant; therefore, the aim of this study was to investigate the drought stress for the levels of phenolic compounds in the morphological parts of the plant.
Methods: This experiment was conducted in 7 L pots under laboratory conditions.
J Sep Sci
January 2025
School of Chemistry and Environment, Southwest Minzu University, Chengdu, China.
Monomer compounds from natural products are the major source of active pharmaceutical molecules, which provide great opportunities for discovering of new drugs. However, natural products contain a large number of rather complex compounds. It is difficult to obtain high-purity monomer compounds from complex natural products.
View Article and Find Full Text PDFFoods
November 2024
Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
Enzyme immobilization is a crucial method in biotechnology and organic chemistry that significantly improves the stability, reusability, and overall effectiveness of enzymes across various applications. Lipases are one of the most frequently applied enzymes in food. The current study investigated the potential of utilizing selected agri-food and waste materials-buckwheat husks, pea hulls, loofah sponges, and yerba mate waste-as carriers for the immobilization of Sustine 121 lipase and yeast biomass as whole-cell biocatalyst and lipase sources.
View Article and Find Full Text PDFFoods
November 2024
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
Oxidative stress, which results from an overproduction of reactive oxygen species (ROS), can cause damage that may contribute to a range of metabolic disorders. Antioxidants are considered to upregulate the activity of antioxidant enzymes, which are crucial for eliminating excess ROS and safeguarding the body against oxidative stress-induced damage. In the present study, the effect of polyphenol extracts from tartary buckwheat sprouts (TBSE) on the redox system of HepG2-cell-induced oxidative injury by hydrogen peroxide were investigated for evaluating the protective effect and mechanism of tartary buckwheat sprouts (TBS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!