A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device. | LitMetric

In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device.

Biotechnol Bioeng

Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.

Published: November 2019

The purpose of this study was to demonstrate self-organizing in vitro multicellular tumor spheroid (MCTS) formation in a microfluidic system and to observe the behavior of MCTSs under controlled microenvironment. The employed microfluidic system was designed for simple and effective formation of MCTSs by generating nutrient and oxygen gradients. The MCTSs were composed of cancer cells, vascular endothelial cells, and type I collagen matrix to mimic the in vivo tumor microenvironment (TME). Cell culture medium was perfused to the microfluidic device loaded with MCTSs by a passive fluidic pump at a constant flow rate. The dose response to an MMPs inhibitor was investigated to demonstrate the effects of biochemical substances. The result of long-term stability of MCTSs revealed that continuous perfusion of cell culture medium is one of the major factors for the successful MCTS formation. A continuous flow of cell culture medium in the in vitro TME greatly affected both the proliferation of cancer cells in the micro-wells and the sustainability of the endothelial cell-layer integrity in the lumen of microfluidic channels. Addition of MMP inhibitor to the cell culture medium improved the stability of the collagen matrix by preventing the detachment and shrinkage of the collagen matrix surrounding the MCTSs. In summary, the present constant flow assisted microfluidic system is highly advantageous for long-term observation of the MCTS generation, tumorous tissue formation process and drug responses. MCTS formation in a microfluidic system may serve as a potent tool for studying drug screening, tumorigenesis and metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.27114DOI Listing

Publication Analysis

Top Keywords

microfluidic system
16
cell culture
16
culture medium
16
formation microfluidic
12
mcts formation
12
collagen matrix
12
multicellular tumor
8
tumor spheroid
8
microfluidic device
8
cancer cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!