An enzyme-free electrochemical aptasensing platform based on a graphene oxide nanosheet-modified gold-disk electrode was developed for the voltammetric detection of alpha-fetoprotein (AFP) in hepatocellular carcinoma by using a Prussian blue nanoparticle (PBNP)-labeled aptamer. The electroactive PBNP, a typical signal-generation tag, was utilized for the labeling of the aminated AFP aptamer by using covalent conjugation. The electrochemical sensing platform was prepared in a simple manner on the basis of a π-π stacking reaction between the immobilized graphene oxide and the PBNP-labeled AFP aptamer. Upon target AFP introduction, the analyte reacted with the aptamer, thus resulting in the dissociation of the PBNP from the nanosheets. In the presence of DNase I, the newly formed AFP/aptamer-PBNP complex was cleaved to release target AFP, which could react again with the aptamer on the nanosheets, thereby causing target recycling. During this process, the cleaved PBNP-aptamer was far away from the electrode to decrease the voltammetric signal. Under optimum conditions, the voltammetric peak current of the modified electrode decreased with the increment of the target AFP concentration within the linear range of 0.01-300 ng mL at a low detection limit of 6.3 pg mL. The precision and reproducibility of the aptasensing protocol were acceptable (CV: <15% for intra-assay and inter-assay). Other possible nontarget biomarkers did not interfere significantly with the voltammetric signal of this system. Human serum samples containing target AFP were assayed with electrochemical aptasensing and a commercial human AFP ELISA kit, and gave well-matched results from these two methods. Importantly, our strategy provides a new horizon for the determination of disease-related proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9an01029g | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, Devchand College, Arjunnagar, Kolhapur, MH, 591237, India.
Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:
Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.
View Article and Find Full Text PDFTalanta
January 2025
Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. Electronic address:
There is a critical need for inclusive diagnostic platforms to enhance the accuracy of early breast cancer detection. Dysregulated microRNA-1246 (miR-1246), closely linked to the disease progression and recurrence, has emerged as a promising diagnostic and prognostic biomarker for BC. However, achieving simple, rapid, and ultrasensitive quantification of serum miRNAs remains significant challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!