Establishment of a mouse model of troglitazone-induced liver injury and analysis of its hepatotoxic mechanism.

J Appl Toxicol

Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.

Published: November 2019

Drug-induced liver injury is a major problem in drug development and clinical drug therapy. Troglitazone (TGZ), a thiazolidinedione antidiabetic drug for the treatment of type II diabetes mellitus, was found to induce rare idiosyncratic severe liver injury in patients, which led to its withdrawal in 2000. However, in normal experimental animals in vivo TGZ has never induced liver injury. To explore TGZ hepatotoxic mechanism, we established a novel mouse model of TGZ-induced liver injury. Administration of BALB/c female mice with a single intraperitoneal TGZ dose (300 mg/kg) significantly elevated alanine aminotransferase and aspartate aminotransferase levels 6 hours after the treatment. The ratio of oxidative stress marker glutathione/disulfide glutathione was significantly decreased. The increased hepatic mRNA levels of inflammation- and oxidative stress-related factors were observed in TGZ-treated mice. Subsequently, hepatic transcriptome profiles of TGZ-exposed liver were compared with those of non-hepatotoxic rosiglitazone. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was activated in TGZ-induced liver injury. The activation of the JAK/STAT pathway promoted phosphorylation of STAT3 in TGZ-treated mice. Consequently, upregulation of STAT3 activation increased mRNA levels of its downstream genes. In conclusion, a single intraperitoneal dose of TGZ exposure could induce liver injury in BALB/c female mice and, by a hepatic transcriptomic analysis, we found that the activation of JAK/STAT pathway might be related to TGZ-induced hepatotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.3838DOI Listing

Publication Analysis

Top Keywords

liver injury
28
mouse model
8
liver
8
hepatotoxic mechanism
8
tgz-induced liver
8
balb/c female
8
female mice
8
single intraperitoneal
8
mrna levels
8
tgz-treated mice
8

Similar Publications

Human liver cell-based assays for the prediction of hepatic bile acid efflux transporter inhibition by drugs.

Expert Opin Drug Metab Toxicol

January 2025

Institut de R&D Servier, Paris-Saclay, F-91190 Gif-sur-Yvette, France.

Introduction: Drug-mediated inhibition of bile salt efflux transporters may cause liver injury. In vitro prediction of drug effects toward canalicular and/or sinusoidal efflux of bile salts from human hepatocytes is therefore a major issue, which can be addressed using liver cell-based assays.

Area Covered: This review, based on a thorough literature search in the scientific databases PubMed and Web of Science, provides key information about hepatic transporters implicated in bile salt efflux, the human liver cell models available for investigating functional inhibition of bile salt efflux, the different methodologies used for this purpose, and the modes of expression of the results.

View Article and Find Full Text PDF

[Research progress on the role of efferocytosis in liver diseases].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Central Laboratory, Chengdu University of TCM, School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, China.

Efferocytosis refers to the process of phagocytes engulfing and clearing the cells after programmed cell death. In recent years, an increasing number of studies have shown that the mechanisms of efferocytosis are closely related to drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, cholestatic liver diseases, metabolic-associated fatty liver disease, alcoholic liver disease, and other liver disorders. This review summarized the research progress on the role of efferocytosis in liver diseases, with the hope of providing new targets for the prevention and treatment of liver diseases.

View Article and Find Full Text PDF

Functional constipation is a common disorder of the gastrointestinal tract in children without specific treatment. Ziziphus jujuba has been used in traditional medicine for various diseases such as constipation. A safe and inexpensive treatment with few side effects can be used as an effective alternative to current medications.

View Article and Find Full Text PDF

Mitochondrial dysfunction in drug-induced hepatic steatosis: recent findings and current concept.

Clin Res Hepatol Gastroenterol

January 2025

INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, 35000 Rennes, France. Electronic address:

Mitochondrial activity is necessary for the maintenance of many liver functions. In particular, mitochondrial fatty acid oxidation (FAO) is required for energy production and lipid homeostasis. This key metabolic pathway is finely tuned by the mitochondrial respiratory chain (MRC) activity and different transcription factors such as peroxisome proliferator-activated receptor α (PPARα).

View Article and Find Full Text PDF

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a significant threat to global public health. Despite reports of liver injury during viral disease, the occurrence and detailed mechanisms underlying the development of secondary exogenous liver injury, particularly in relation to changes in metabolic enzymes, remain to be fully elucidated. Therefore, this study was aimed to investigate the mechanisms underlying SARS-CoV-2-induced molecular alterations in hepatic metabolism and the consequent secondary liver injury resulting from alcohol exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!