Multifaceted roles of thrombopoietin in hematopoietic stem cell regulation.

Ann N Y Acad Sci

International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Japan.

Published: April 2020

AI Article Synopsis

  • * Thpo signaling helps in the self-renewal of hematopoietic stem cells (HSCs), which has led to the creation of Thpo mimetic drugs aimed at treating diseases like aplastic anemia where HSC function is impaired.
  • * This review focuses on the details of how Thpo-Mpl signaling influences the regulation and function of HSCs in the body.

Article Abstract

Thrombopoietin (Thpo) and its receptor myeloid proliferative leukemia (Mpl) were initially identified as the cytokine signaling that stimulates megakaryopoiesis and platelet production. However, Thpo-Mpl signaling has also been widely characterized as one of the few cytokine systems that directly regulates hematopoietic stem and progenitor cells. The ability of Thpo signaling to stimulate hematopoietic stem cell (HSC) self-renewal has led to the development and utilization of Thpo mimetic drugs to treat hematopoietic diseases with restricted function of HSCs, such as aplastic anemia. This review will cover the mechanisms by which Thpo-Mpl signaling regulates HSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nyas.14169DOI Listing

Publication Analysis

Top Keywords

hematopoietic stem
12
stem cell
8
thpo-mpl signaling
8
multifaceted roles
4
roles thrombopoietin
4
hematopoietic
4
thrombopoietin hematopoietic
4
cell regulation
4
regulation thrombopoietin
4
thrombopoietin thpo
4

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Somatic stem cell pools comprise diverse, highly specialized subsets whose individual contribution is critical for the overall regenerative function. In the bone marrow, myeloid-biased hematopoietic stem cells (myHSCs) are indispensable for replenishment of myeloid cells and platelets during inflammatory response but, at the same time, become irreversibly damaged during inflammation and aging. Here we identify an extrinsic factor, semaphorin 4A (Sema4A), which non-cell-autonomously confers myHSC resilience to inflammatory stress.

View Article and Find Full Text PDF

Transplantation-associated thrombotic microangiopathy (TMA) is a severe complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) with high mortality. As calcineurin inhibitors (CNIs) reportedly contribute to TMA via drug-induced endothelial injury, treatment of TMA often involves CNI discontinuation or dose reduction. However, renal-limited TMA, defined as biopsy-proven renal TMA without the classical triad (hemolytic anemia, thrombocytopenia, and organ damage), has rarely been reported after allo-HSCT, and its optimal management remains unknown.

View Article and Find Full Text PDF

Introduction: Graft-versus-host disease (GvHD) remains a major complication of allogeneic stem cell transplantation (allo-SCT), affecting 30-70% of patients (representing 800 new patients per year in the UK). The risk is higher in patients undergoing unrelated allo-SCT. About 1 in 10 patients die as a result of GvHD or through complications of its treatment.

View Article and Find Full Text PDF

G-CSF modulates innate and adaptive immunity via the ligand-receptor pathway of binding GCSFR in Flounder (Paralichthys olivaceus).

Fish Shellfish Immunol

January 2025

Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China. Electronic address:

Granulocyte colony stimulating factor (G-CSF) has been shown in mammalia to activate a series of signal transduction systems and exert various biological effects, such as controlling the differentiation, proliferation, and survival of granulocytes, promoting the movement of hematopoietic stem cells from the bone marrow to the bloodstream, and triggering the development of T cells, dendritic cells, and immune tolerance in transplants. In this study, the mRNA of flounder G-CSF (PoG-CSF) and its receptor (PoGCSFR) were detected and widely expressed in all examined tissues with the highest expression in peritoneal cells. G-CSF and GCSFR cells were observed to be abundantly distributed in the leukocytes from the peritoneal cavity, followed by head kidney.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!