Calorimetric and terahertz-far-infrared (THz-FIR) spectroscopic and infrared (IR) spectroscopic measurements were conducted for [Li+@C60](PF6-) at temperatures between 1.8 and 395 K. [Li+@C60](PF6-) underwent a structural phase transition at around 360 K accompanied by the orientational order-disorder transition of Li+@C60 and PF6-. The transition occurred in a step-wise manner. The total transition entropy (ΔtrsS) of 40.1 ± 0.4 J K-1 mol-1 was smaller than that of the orientational order-disorder transition in a pristine C60 crystal (ΔtrsS = 45.4 ± 0.5 J K-1 mol-1). Thus, the orientational disorder of Li+@C60 in the high-temperature phase of [Li+@C60](PF6-) was much less excited than that of the pristine C60 owing to the Coulombic interactions, which stabilized the ionic crystal lattice of [Li+@C60](PF6-). At T < 100 K, upon cooling, Li+ ions were trapped in two pockets on the inner surface of C60, and no phase transition was observed. Finally, the Li+ ions achieved a complete order at 24 K through antiferroelectric transition. The ΔtrsS value of 4.6 ± 0.4 J K-1 mol-1 was slightly smaller than R ln 2 = 5.76 J K-1 mol-1 expected for the two-site order-disorder transition. The extent of the Li+ motion in the C60 cage was related to the selection rule in the THz-FIR and IR spectroscopy of the C60 internal vibrations, because a C60 cage should be polarized by the Li+ ion. It is shown that the local symmetry of the caged molecule can be modified by the rotational or hopping motion of the encaged ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp02849h | DOI Listing |
Inorg Chem
January 2025
Radiation Science & Technology Department, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, Delft 2629JB, The Netherlands.
The detailed crystal structure as well as the heat capacity at low temperature and standard entropy of BaMoO are reported for the first time. High-resolution X-ray and neutron diffraction were employed to reveal the structural features of this compound. BaMoO has a six-coordinated Mo and a strongly negative excess volume with respect to the binary oxides.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China. Electronic address:
Apo-transferrin (apo-TRF) is a vital protein for maintaining iron balance in the body, which is produced by the liver. Indisulam (IDM) has been extensively used to treat cancer in clinical study and has been identified as a molecular glue. Iron imbalances in the body are believed to encourage the growth and spread of cancer cells.
View Article and Find Full Text PDFPhotochem Photobiol Sci
December 2024
Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan.
The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.
View Article and Find Full Text PDFGels
November 2024
Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 3349001, Chile.
Cationic hydrogel particles (CHPs) crosslinked with glutaraldehyde were synthesized and characterized to evaluate their removal capacity for two globally consumed antibiotics: amoxicillin and sulfamethoxazole. The obtained material was characterized by FTIR, SEM, and TGA, confirming effective crosslinking. The optimal working pH was determined to be 6.
View Article and Find Full Text PDFNanotechnology
January 2025
School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Vietnam.
In this study, the mixture of zinc acetate dehydrates and boric acid was pyrolyzed in zeolite X to prepare novel B/ZnO/zeolite nanocomposites for the enhanced removal of tartrazine (TA) in aqueous environment. The composites are porous material with a relatively large pore size (35.3 nm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!