Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High sea surface temperatures often lead to coral bleaching wherein reef-building corals lose significant numbers of their endosymbiotic dinoflagellates (Symbiodiniaceae). These increasingly frequent bleaching events often result in large scale coral mortality, thereby devasting reef systems throughout the world. The reef habitats surrounding Palau are ideal for investigating coral responses to climate perturbation, where many inshore bays are subject to higher water temperature as compared with offshore barrier reefs. We examined fourteen physiological traits in response to high temperature across various symbiotic dinoflagellates in four common Pacific coral species, Acropora muricata, Coelastrea aspera, Cyphastrea chalcidicum and Pachyseris rugosa found in both offshore and inshore habitats. Inshore corals were dominated by a single homogenous population of the stress tolerant symbiont Durusdinium trenchii, yet symbiont thermal response and physiology differed significantly across coral species. In contrast, offshore corals harbored specific species of Cladocopium spp. (ITS2 rDNA type-C) yet all experienced similar patterns of photoinactivation and symbiont loss when heated. Additionally, cell volume and light absorption properties increased in heated Cladocopium spp., leading to a greater loss in photo-regulation. While inshore coral temperature response was consistently muted relative to their offshore counterparts, high physiological variability in D. trenchii across inshore corals suggests that bleaching resilience among even the most stress tolerant symbionts is still heavily influenced by their host environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620294 | PMC |
http://dx.doi.org/10.1038/s41598-019-46412-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!