Failure to expand pancreatic β-cells in response to metabolic stress leads to excessive workload resulting in β-cell dysfunction, dedifferentiation, death, and development of type 2 diabetes. In this study, we demonstrate that induction of Myc is required for increased pancreatic β-cell replication and expansion during metabolic stress-induced insulin resistance with short-term high-fat diet (HFD) in young mice. β-Cell-specific Myc knockout mice fail to expand adaptively and show impaired glucose tolerance and β-cell dysfunction. Mechanistically, PKCζ, ERK1/2, mTOR, and PP2A are key regulators of the Myc response in this setting. DNA methylation analysis shows hypomethylation of cell cycle genes that are Myc targets in islets from young mice fed with a short-term HFD. Importantly, DNA hypomethylation of Myc response elements does not occur in islets from 1-year-old mice fed with a short-term HFD, impairing both Myc recruitment to cell cycle regulatory genes and β-cell replication. We conclude that Myc is required for metabolic stress-mediated β-cell expansion in young mice, but with aging, Myc upregulation is not sufficient to induce β-cell replication by, at least partially, an epigenetically mediated resistance to Myc action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754239PMC
http://dx.doi.org/10.2337/db18-1368DOI Listing

Publication Analysis

Top Keywords

β-cell replication
16
young mice
16
myc required
12
mice fed
12
myc
10
high-fat diet
8
β-cell dysfunction
8
myc response
8
cell cycle
8
fed short-term
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!