Monocytes are activated in inflammatory conditions via a variety of cytokine receptors as well as in a procoagulatory setting through thrombin, acting upon protease-activated receptors (PARs). This study investigated the expression pattern of PAR1 and PAR3 on human monocyte subsets. Furthermore, a possible regulation of the expression of PAR1 and PAR3 in these cells by inflammatory activation were studied. CD16 monocytes showed significantly higher levels of PAR1 and PAR3 as compared with CD16 monocytes. Ex vivo treatment of whole blood with lipopolysaccharide (LPS) increased PAR1 and PAR3 messenger ribonucleic acid (mRNA) in human monocytes. In addition, increase of PAR1 was seen in all three subsets upon LPS treatment, whereas PAR3 increased significantly only in CD16 monocytes and nonclassical CD16 monocytes. Protein levels of PAR1 and PAR3 significantly increased on monocytes in vivo in human endotoxemia 1 hour after LPS infusion. PAR1 increased significantly in CD16 monocytes and nonclassical CD16 monocytes. In this in vivo model, PAR3 was also significantly elevated in CD16 monocytes and increased slightly albeit not significantly in CD16 monocytes. Endotoxemia increased plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF) expression in monocytes in humans. Pretreatment of healthy volunteers with the PAR1 antagonist vorapaxar blocked the increase in PAI-1 but not the increase in TF. We here provide new evidence for a critical role for monocytes as cellular mediators that contribute to the activation of coagulation in diseases characterized by an inflammatory state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0039-1692219 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!