Combating climate change requires unified action across all sectors of society. However, this collective action is precluded by the 'consensus gap' between scientific knowledge and public opinion. Here, we test the extent to which the iconic cities around the world are likely to shift in response to climate change. By analyzing city pairs for 520 major cities of the world, we test if their climate in 2050 will resemble more closely to their own current climate conditions or to the current conditions of other cities in different bioclimatic regions. Even under an optimistic climate scenario (RCP 4.5), we found that 77% of future cities are very likely to experience a climate that is closer to that of another existing city than to its own current climate. In addition, 22% of cities will experience climate conditions that are not currently experienced by any existing major cities. As a general trend, we found that all the cities tend to shift towards the sub-tropics, with cities from the Northern hemisphere shifting to warmer conditions, on average ~1000 km south (velocity ~20 km.year-1), and cities from the tropics shifting to drier conditions. We notably predict that Madrid's climate in 2050 will resemble Marrakech's climate today, Stockholm will resemble Budapest, London to Barcelona, Moscow to Sofia, Seattle to San Francisco, Tokyo to Changsha. Our approach illustrates how complex climate data can be packaged to provide tangible information. The global assessment of city analogues can facilitate the understanding of climate change at a global level but also help land managers and city planners to visualize the climate futures of their respective cities, which can facilitate effective decision-making in response to on-going climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619606 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217592 | PLOS |
Orv Hetil
January 2025
1 Semmelweis Egyetem, Általános Orvostudományi Kar, Városmajori Szív- és Érgyógyászati Klinika, Kísérletes Kardiológiai és Sebészeti Műtéttani Tanszék Budapest, Nagyvárad tér 4., 1089 Magyarország.
Bioinformatics
January 2025
Biocomputing Group, University of Bologna, Italy.
Motivation: The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.
Results: In this work we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations.
Am J Bot
January 2025
School of Biological Sciences, Washington State University, Pullman, 99164, Washington, USA.
Premise: The movement of lineages into novel areas can promote ecological opportunity and adaptive radiation, leading to significant species diversity. Not all studies, however, have identified support for ecological opportunity associated with novel intercontinental colonizations. To gain key insights into the drivers of ecological opportunity, we tested whether intercontinental dispersals resulted in ecological opportunity using the Hydrangeaceae-Loasaceae clade, which has numerous centers of diversity across the globe.
View Article and Find Full Text PDFBMC Surg
January 2025
Global Surgery Division, Department of Surgery, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
Climate change is an emerging global health crisis, disproportionately affecting low- and middle-income countries (LMICs) where health outcomes are increasingly compromised by environmental stressors such as pollution, natural disasters, and human migration. With a focus on promoting health equity, Global Surgery advocates for expanding access to surgical care and enhancing health outcomes, particularly in resource-limited and disaster-affected areas like LMICs. The healthcare industry-and more specifically, surgical care-significantly contributes to the global carbon footprint, primarily through resource-intensive settings, i.
View Article and Find Full Text PDFBMC Public Health
January 2025
Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
Background: Reducing the environmental impact of foods consumed is important for meeting climate goals. We aimed to conduct a randomised controlled trial to test whether ecolabels reduce the environmental impact of food selected in worksite cafeterias, alone or in combination with increased availability of more sustainable meal options.
Methods: Worksite cafeterias (n = 96) were randomised to one of three study groups, with 54 included for final analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!